Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(24): 12289-93, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27273772

RESUMO

Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.

2.
J Am Chem Soc ; 136(16): 6021-30, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24689747

RESUMO

Photochemical CO2 reduction sensitized by rhenium-bipyridyl complexes has been studied through multiple approaches during the past several decades. However, a key reaction intermediate, the CO2-coordinated Re-bipyridyl complex, which should govern the activity of CO2 reduction in the photocatalytic cycle, has never been detected in a direct way. In this study on photoreduction of CO2 catalyzed by the 4,4'-dimethyl-2,2'-bipyridine (dmbpy) complex, [Re(dmbpy)(CO)3Cl] (1), we successfully detect the solvent-coordinated Re complex [Re(dmbpy)(CO)3DMF] (2) as the light-absorbing species to drive photoreduction of CO2. The key intermediate, the CO2-coordinated Re-bipyridyl complex, [Re(dmbpy)(CO)3(COOH)], is also successfully detected for the first time by means of cold-spray ionization spectrometry (CSI-MS). Mass spectra for a reaction mixture with isotopically labeled (13)CO2 provide clear evidence for the incorporation of CO2 into the Re-bipyridyl complex. It is revealed that the starting chloride complex 1 was rapidly transformed into the DMF-coordinated Re complex 2 through the initial cycle of photoreduction of CO2. The observed induction period in the time profile of the CSI-MS signals can well explain the subsequent formation of the CO2-coordinated intermediate from the solvent-coordinated Re-bipyridyl complex. An FTIR study of the reaction mixture in dimethyl sulfoxide clearly shows the appearance of a signal at 1682 cm(-1), which shifts to 1647 cm(-1) for the (13)CO2-labeled counterpart; this is assigned as the CO2-coordinated intermediate, Re(II)-COOH. Thus, a detailed understanding has now been obtained for the mechanism of the archetypical photochemical CO2 reduction sensitized by a Re-bipyridyl complex.

3.
Nanoscale ; 5(8): 3182-93, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23471173

RESUMO

From the viewpoint of developing photoresponsive supramolecular systems in microenvironments to exhibit more sophisticated photo-functions even at the macroscopic level, inorganic/organic hybrid compounds based on clay or niobate nanosheets as the microenvironments were prepared, characterized, and examined for their photoreactions. We show here a novel type of artificial muscle model unit having much similarity with that in natural muscle fibrils. Upon photoirradiation, the organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale, and the interlayer spaces in the layered hybrid structure shrink and expand vertically. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) compared with the molecular size of ~1 nm, based on a reversible sliding mechanism.


Assuntos
Modelos Anatômicos , Modelos Biológicos , Músculos , Nanoestruturas/química , Silicatos de Alumínio/química , Compostos Azo/química , Catálise , Argila , Fluoretos/química , Humanos , Minerais/química , Processos Fotoquímicos , Polimerização/efeitos da radiação , Polímeros/síntese química , Polímeros/química , Estereoisomerismo
4.
Langmuir ; 29(7): 2108-19, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23343172

RESUMO

We have been investigating complexes composed of nanolayered materials with anionic charges such as clay nanosheets and dye molecules such as cationic porphyrins. It was found that the structure of dye assembly on the layered materials can be effectively controlled by the use of electrostatic host-guest interaction. The intermolecular distance, the molecular orientation angle, the segregation/integration behavior, and the immobilization strength of the dyes can be controlled in the clay-dye complexes. The mechanism to control these structural factors has been discussed and was established as a size-matching effect. Unique photochemical reactions such as energy transfer through the use of this methodology have been examined. Almost 100% efficiency of the energy-transfer reaction was achieved in the clay-porphyrin complexes as a typical example for an artificial light-harvesting system. Control of the molecular orientation angle is found to be useful in regulating the energy-transfer efficiency and in preparing photofunctional materials exhibiting solvatochromic behavior. Through our study, clay minerals turned out to serve as protein-like media to control the molecular position, modify the properties of the molecule, and provide a unique environment for chemical reactions.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos
5.
Faraday Discuss ; 155: 145-63; discussion 207-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470972

RESUMO

The reaction mechanism of the highly efficient (phi = 0.60), selective photochemical epoxidation of alkenes sensitized by CO-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)), with water acting both as an electron and oxygen atom donor, was investigated. The steady-state light irradiation of the reaction mixture indicated the formation of the Ru(II)TMP (CO) cation radical under neutral conditions, which was effectively trapped by an hydroxide ion to regenerate the starting sensitizer. By means of a laser flash photolysis experiment, the formation of the cation radical as the primary process from the triplet excited state of Ru(II)TMP(CO) was clearly observed. Four kinds of transients were detected in completely different ranges of the delay time: the excited triplet state of Ru(II)TMP(CO) [delay time region <20 micros], the cation radical of Ru(II)TMP(CO)(CH3CN) [20-50 micros], the hydroxyl-coordinated Intermediate [I] [50-200 micros], and the cyclohexane-attached Intermediate [II] [200 micros-8 ms]. A reaction mechanism was revealed that involves RuTMP(CO) cation radical formation from the triplet excited state of the sensitizer, followed by attack of an hydroxide ion to form an hydroxyl-coordinated Ru-porphyrin (Intermediate [I]) and subsequent reaction with cyclohexene to form Intermediate [II]. The kinetics for each step of the successive processes was carefully analyzed and their rate constants were determined. The two-electron oxidation of water by one-photon irradiation, as revealed in the photochemical epoxidation, is proposed to be one of the more promising candidates to get through the bottleneck of water oxidation in artificial photosynthesis.


Assuntos
Metaloporfirinas/química , Oxigênio/química , Fotoquímica , Fótons , Fotossíntese , Água/química , Alcenos/química , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cátions , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Elétrons , Concentração de Íons de Hidrogênio , Cinética , Luz , Metaloporfirinas/metabolismo , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Rutênio/química , Rutênio/metabolismo , Água/metabolismo
6.
ACS Appl Mater Interfaces ; 4(2): 811-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22216897

RESUMO

The microadsorption structure of two kinds of porphyrin molecules on an anionic clay surface was investigated by photochemical energy transfer reaction. Three procedures were examined for the preparation of the clay/porphyrin complexes: (i) coadsorption (CA) method, (ii) sequential adsorption (SA) method, and (iii) independent adsorption (IA) method as described in the text. Efficient and moderate energy transfer reactions were observed in the CA and SA complexes, respectively. On the contrary, the energy transfer did not occur in the IA complex. These results indicate that the microadsorption structure of the two kinds of porphyrin on the clay mineral surface resulting from the sample preparation methods, affects the energy transfer efficiency. As a result, it was revealed that (i) the adsorbed porphyrins can move on the clay mineral surface but cannot move from one clay surface to another clay sheet, and (ii) the integration structure of two kinds of porphyrin is more stable than the segregation structure in the present system. This unusual structure originated from an extremely strong electrostatic interaction between the porphyrin and the clay mineral as a result of a "size-matching rule". These unique strongly fixed dye assemblies on the clay mineral surface, in which the aggregation and segregation of dyes are suppressed, is very promising and attractive for constructing efficient photochemical reaction systems.

7.
J Am Chem Soc ; 133(43): 17130-3, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21978075

RESUMO

A novel photoactivated artificial muscle model unit is reported. Here we show that organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale and the interlayer spaces in the layered hybrid structure shrink and expand vertically by photoirradiation. The sliding movement of the system on a giant scale is the first example of an artificial muscle model unit having much similarity with that in natural muscle fibrils. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) relative to the molecular size of ~1 nm by means of a reversible sliding mechanism.


Assuntos
Órgãos Artificiais , Músculos , Nanoestruturas/química , Processos Fotoquímicos/efeitos da radiação , Músculos/efeitos da radiação , Miofibrilas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície
8.
J Am Chem Soc ; 133(36): 14280-6, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21809841

RESUMO

The quantitative excited energy transfer reaction between cationic porphyrins on an anionic clay surface was successfully achieved. The efficiency reached up to ca. 100% owing to the "Size-Matching Rule" as described in the text. It was revealed that the important factors for the efficient energy transfer reaction are (i) suppression of the self-quenching between adjacent dyes, and (ii) suppression of the segregated adsorption structure of two kinds of dyes on the clay surface. By examining many different kinds of porphyrins, we found that tetrakis(1-methylpyridinium-3-yl) porphyrin (m-TMPyP) and tetrakis(1-methylpyridinium-4-yl) porphyrin (p-TMPyP) are the suitable porphyrins to accomplish a quantitative energy transfer reaction. These findings indicate that the clay/porphyrin complexes are promising and prospective candidates to be used for construction of an efficient artificial light-harvesting system.

9.
Langmuir ; 27(17): 10722-9, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21774506

RESUMO

Saponite-type clays that have different cation exchange capacities were successfully synthesized by hydrothermal synthesis. The structure and properties were analyzed by X-ray diffraction, X-ray fluorescence, (27)Al NMR, FT-IR, thermogravimetric and differential thermal analysis, atomic force microscopy, and cation exchange capacity measurement. The intercharge distances on the synthetic saponite (SS) surfaces were calculated to be 0.8-1.9 nm on the basis of a hexagonal array. The complex formation behavior between SS and cationic porphyrins was examined. It turns out that the average intermolecular distance between porphyrin molecules on the SS surface can be controlled, depending on the charge density of the SS. In the case of tetrakis(1-methylpyridinium-4-yl)porphyrin (H(2)TMPyP(4+)), the average intermolecular distances on the SS surface can be controlled from 2.3 to 3.0 nm on the basis of a hexagonal array. It was also found that absorption maxima of porphyrins depend on the charge density of the SS. The adsorption behavior of porphyrin on the SS surface can be rationally understood by the previously reported "size-matching rule". This methodology using host-guest interaction can realize a unique adsorption structure control of the porphyrin molecule on the SS surface, where the gap distance between guest porphyrin molecules is rather large. These findings will be highly valuable to construct photochemical reaction systems such as energy transfer in the complexes.


Assuntos
Silicatos de Alumínio/química , Porfirinas/química , Adsorção , Silicatos de Alumínio/síntese química , Cátions/química , Argila , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
J Biol Chem ; 286(13): 11555-62, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21292768

RESUMO

Nonfibrillar assemblies of amyloid ß-protein (Aß) are considered to play primary roles in Alzheimer disease (AD). Elucidating the assembly pathways of these specific aggregates is essential for understanding disease pathogenesis and developing knowledge-based therapies. However, these assemblies cannot be monitored in vivo, and there has been no reliable in vitro monitoring method at low protein concentration. We have developed a highly sensitive in vitro monitoring method using fluorescence correlation spectroscopy (FCS) combined with transmission electron microscopy (TEM) and toxicity assays. Using Aß labeled at the N terminus or Lys(16), we uncovered two distinct assembly pathways. One leads to highly toxic 10-15-nm spherical Aß assemblies, termed amylospheroids (ASPDs). The other leads to fibrils. The first step in ASPD formation is trimerization. ASPDs of ∼330 kDa in mass form from these trimers after 5 h of slow rotation. Up to at least 24 h, ASPDs remain the dominant structures in assembly reactions. Neurotoxicity studies reveal that the most toxic ASPDs are ∼128 kDa (∼32-mers). In contrast, fibrillogenesis begins with dimer formation and then proceeds to formation of 15-40-nm spherical intermediates, from which fibrils originate after 15 h. Unlike ASPD formation, the Lys(16)-labeled peptide disturbed fibril formation because the Aß(16-20) region is critical for this final step. These differences in the assembly pathways clearly indicated that ASPDs are not fibril precursors. The method we have developed should facilitate identifying Aß assembly steps at which inhibition may be beneficial.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Peptídeos/química , Multimerização Proteica , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Amiloide/farmacologia , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Células Cultivadas , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos
11.
ChemSusChem ; 4(2): 173-9, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21271684

RESUMO

The state-of-the-art of research on artificial photosynthesis is briefly reviewed. Insights into how Nature takes electrons from water, the photon-flux density of sunlight, the time scale for the arrival of the next photon (electron-hole) at the oxygen-evolving complex, how Nature solves the photon-flux-density problem, and how we can get through the bottleneck of water oxidation are discussed. An alternate route for a two-electron process induced by one-photon excitation is postulated for getting through the bottleneck of water oxidation.


Assuntos
Fotossíntese , Água/química , Transporte de Elétrons , Elétrons , Oxirredução , Fótons
12.
Photochem Photobiol Sci ; 9(7): 931-6, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20464022

RESUMO

Two key reaction intermediates in the photochemical oxygenation of alkene sensitized by carbonyl-coordinated ruthenium(ii)-porphyrin complex, with water acting both as an electron and oxygen atom donor, are postulated. Under the low concentration of hydroxide ion (<2 x 10(-3) M) added to the reaction mixture of tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(ii) (Ru(II)TMP(CO)), K(4)PtCl(6) as a sacrificial electron acceptor, and cyclohexene as a substrate in aqueous acetonitrile, the major reaction product was cyclohexaneoxide ("Epoxide"), while it drastically decreased along with an increase of 2-cyclohexenol ("Alcohol") by increasing the amount of hydroxide ion (>2 x 10(-3) M). The tendency was more obvious in the case of tetrasodium tetra(4-sulfonate)phenylporphyrinatoruthenium(ii) (Ru(II)TSPP(CO)) in aqueous solution. The "Alcohol" was exclusively formed in the higher concentration region of OH(-), strongly suggesting the presence of acid-base equilibrium among two reaction intermediates. Theoretical DFT calculation indicates that the hydroxyl-coordinated one-electron oxidized Ru-porphyrin (Intermediate (I)), which is formed by the axial ligation of hydroxide ion to the cation radical of Ru-porphyrin generated through electron transfer from the excited triplet state of the sensitizer porphyrins, suffers deprotonation of its axial hydroxide group to lead to an oxo-type complex (Intermediate (II)) formation. The DFT calculation also indicates that the electron spin on the Intermediate (I) is shared by the axial oxygen atom and the central Ru metal, while it is mostly localized on the axial oxygen atom to behave as an oxygen radical in the case of the Intermediate (II). These are very strong indications towards understanding how OH(-) (water molecule) is oxidatively activated on the Ru center: the water molecule is serving as an electron donor ion in the redox cycles. Theoretical calculation predicts that Intermediate (I) allows the epoxidation of alkene and Intermediate (II) can proceed through hydrogen abstraction from the substrate and is rebound to form hydroxylated compound, "Alcohol."

13.
Langmuir ; 26(7): 4639-41, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20229990

RESUMO

A novel optically transparent membrane composed of porphyrin-clay mineral complexes was developed. Reversible solvatochromism behavior of the membrane was successfully observed, due to an orientation change of porphyrin in the clay interlayer space. The lambda(max) value of porphyrin was 423 nm in acetone, while it was 464 nm in hexane. The color of the membrane changed from pink to green through to brown, when Sn porphyrin was used. The mechanism for solvatochromism in the present system is very unique compared to those for conventionally reported materials.

14.
Inorg Chem ; 45(20): 8342-54, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16999434

RESUMO

New ruthenium(II) complexes having a tetradentate ligand such as tris(2-pyridylmethyl)amine (TPA), tris[2-(5-methoxycarbonyl)pyridylmethyl]amine [5-(MeOCO)3-TPA], tris(2-quinolylmethyl)amine (TQA), or bis(2-pyridylmethyl)glycinate (BPG) have been prepared. The reaction of the ligand with [RuCl2(Me2SO)4] resulted in a mixture of trans and cis isomers of the chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes containing a TPA or a BPG, whereas a trans(Cl,N(amino)) isomer was selectively obtained for 5-(MeOCO)3-TPA and TQA. The trans and cis isomers of the [RuCl(TPA)(Me2SO)]+ complex were easily separated by fractional recrystallization. The molecular structures of trans- and cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complexes and the trans(Cl,N(amino))-[RuCl{5-(MeOCO)3-TPA}(Me2SO)]+ complex have been determined by X-ray structural analyses. The reaction of TPA with [RuCl2(PhCN)4] gave a single isomer of the chloro(benzonitrile)ruthenium(II) complex, whereas the bis(benzonitrile)ruthenium(II) complex was obtained with BPG. The cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complex is thermodynamically much less stable than the trans isomer and isomerizes in dimethyl sulfoxide at 65-100 degrees C. Oxygenation of alkanes catalyzed by these ruthenium(II) complexes has been examined. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes with TPA and its derivatives using m-chloroperbenzoic acid as a cooxidant showed high catalytic ability. Adamantane was efficiently and selectively oxidized to give 1-adamantanol up to 88%. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complex with 5-(MeOCO)3-TPA was found to be the most active catalyst among the complexes examined.

15.
Chem Commun (Camb) ; (7): 798-9, 2004 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15045069

RESUMO

The chloro(Me(2)SO)ruthenium(II) complexes with tris(2-pyridylmethyl)amine or its derivative catalyses the selective, stereospecific, and photoregulative alkane oxidation in the presence of 2,6-dichloropyridine N-oxide under visible light irradiation.

16.
Acta Crystallogr C ; 59(Pt 11): m487-90, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14605400

RESUMO

In the structures of the title compounds, [Pd(C(5)H(9))(C(32)H(37)N(2)O(2)P)]PF(6) and [PdCl(2)(C(32)H(37)N(2)O(2)P)], the bis(dihydrooxazolyl)phosphine ligand is N,P-bidentate, with S chirality on the P atom. In the allyl complex, the pi-allyl ligand ligates in a syn-syn-kappa(3)C manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...