Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 14(2): 2875-902, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23364611

RESUMO

Efficient, low-cost enzymatic hydrolysis of lignocellulosic residues is essential for cost-effective production of bioethanol. The production of ß-glucosidase, ß-xylosidase and xylanase by Colletotrichum graminicola was optimized using Response Surface Methodology (RSM). Maximal production occurred in wheat bran. Sugarcane trash, peanut hulls and corncob enhanced ß-glucosidase, ß-xylosidase and xylanase production, respectively. Maximal levels after optimization reached 159.3 ± 12.7 U g-1, 128.1 ± 6.4 U g-1 and 378.1 ± 23.3 U g-1, respectively, but the enzymes were produced simultaneously at good levels under culture conditions optimized for each one of them. Optima of pH and temperature were 5.0 and 65 °C for the three enzymes, which maintained full activity for 72 h at 50 °C and for 120 min at 60 °C (ß-glucosidase) or 65 °C (ß-xylosidase and xylanase). Mixed with Trichoderma reesei cellulases, C. graminicola crude extract hydrolyzed raw sugarcane trash with glucose yield of 33.1% after 48 h, demonstrating good potential to compose efficient cocktails for lignocellulosic materials hydrolysis.

2.
Biochim Biophys Acta ; 1818(11): 2588-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22588134

RESUMO

This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (γC(33)) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K(+), ATP and NH(4)(+). K(0.5) for Na(+) was unaffected. Exogenous pig FXYD2 increased the V(max) for stimulation of gill Na,K-ATPase activity by Na(+), K(+) and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na,K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity.


Assuntos
Crustáceos/metabolismo , Brânquias/enzimologia , Microssomos/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-19535031

RESUMO

This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH(4)(+), discussed regarding NH(4)(+) excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7+/-16.7 nmol Pi min(-1) mg(-1) and K(0.5)=174.2+/-9.8 mmol L(-1), obeying cooperative kinetics (n(H)=1.2). Stimulation by sodium (V=308.9+/-15.7 nmol Pi min(-1) mg(-1), K(0.5)=7.8+/-0.4 mmol L(-1)), magnesium (299.2+/-14.1 nmol Pi min(-1) mg(-1), K(0.5)=767.3+/-36.1 mmol L(-1)), potassium (300.6+/-15.3 nmol Pi min(-1) mg(-1), K(0.5)=1.6+/-0.08 mmol L(-1)) and ammonium (V=345.1+/-19.0 nmol Pi min(-1) mg(-1), K(0.5)=6.0+/-0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(I)=45.1+/-2.5 micromol L(-1), although affinity for the inhibitor increased (K(I)=22.7+/-1.1 micromol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other.


Assuntos
Aclimatação/fisiologia , Amônia/metabolismo , Braquiúros/enzimologia , Braquiúros/fisiologia , Brânquias/enzimologia , Microssomos/enzimologia , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Especificidade da Espécie
4.
Artigo em Inglês | MEDLINE | ID: mdl-19422928

RESUMO

We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na+, K+)-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 per thousand or 33 per thousand salinity. C. ornatus is isosmotic after acclimation to 21 per thousand but is hyposmotic at 33 per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH4+ modulates enzyme affinity for K+, which increases 187-fold in crabs acclimated to 33 per thousand salinity. The (Na+, K+)-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 per thousand), with little change in KM values (approximately 50 micromol L(-1)). K+ together with NH4+ synergistically stimulated activity to maximum rates of approximately 240 nmol Pi min(-1) mg(-1). KI values for ouabain inhibition (approximately 110 micromol L(-1)) decreased to 44.9 +/- 1.0 micromol L(-1) (21 per thousand) and 28.8 +/- 1.3 micromol L(-1) (33 per thousand) in the presence of both K+ and NH4+. Assays employing various inhibitors suggest the presence of mitochondrial F0F1-, and K+- and V-ATPase activities in the gill microsomes.


Assuntos
Braquiúros/fisiologia , Brânquias/enzimologia , Hemolinfa/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Aclimatação/efeitos dos fármacos , Adaptação Fisiológica , Animais , Concentração Osmolar , Ouabaína/farmacologia , Potássio/farmacologia , Compostos de Amônio Quaternário/farmacologia , Salinidade , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
5.
J Membr Biol ; 224(1-3): 33-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18841405

RESUMO

We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M (r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always <2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Membrana Celular/enzimologia , Lâmina de Crescimento/enzimologia , Íons/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/química , Apirase/química , Western Blotting , Cálcio/farmacologia , Membrana Celular/química , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Lisofosfatidilcolinas/química , Magnésio/farmacologia , Ligação Proteica , Ratos , Especificidade por Substrato
6.
J Colloid Interface Sci ; 320(2): 476-82, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280491

RESUMO

A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.


Assuntos
Fosfatase Alcalina/química , Glicerofosfolipídeos/química , Glicosilfosfatidilinositóis/química , Membranas Artificiais , Transição de Fase , Fosfatase Alcalina/isolamento & purificação , Animais , Glicosilfosfatidilinositóis/isolamento & purificação , Ratos , Espectrofotometria Infravermelho
7.
Artigo em Inglês | MEDLINE | ID: mdl-16931080

RESUMO

To better comprehend the role of gill ion regulatory mechanisms, the modulation by Na(+), K(+), NH(4)(+) and ATP of (Na(+), K(+))-ATPase activity was examined in a posterior gill microsomal fraction from the hermit crab, Clibanarius vittatus. Under saturating Mg(2+), Na(+) and K(+) concentrations, two well-defined ATP hydrolyzing sites were revealed. ATP was hydrolyzed at the high-affinity sites at a maximum rate of V=19.1+/-0.8 U mg(-1) and K(0.5)=63.8+/-2.9 nmol L(-1), obeying cooperative kinetics (n(H)=1.9); at the low-affinity sites, hydrolysis obeyed Michaelis-Menten kinetics with K(M)=44.1+/-2.6 mumol L(-1) and V=123.5+/-6.1 U mg(-1). Stimulation by Na(+) (V=149.0+/-7.4 U mg(-1); K(M)=7.4+/-0.4 mmol L(-1)), Mg(2+) (V=132.0+/-5.3 U mg(-1); K(0.5)=0.36+/-0.02 mmol L(-1)), NH(4)(+) (V=245.6+/-9.8 U mg(-1); K(M)=4.5+/-0.2 mmol L(-1)) and K(+) (V=140.0+/-4.9 U mg(-1); K(M)=1.5+/-0.1 mmol L(-1)) followed a single saturation curve and, except for Mg(2+), obeyed Michaelis-Menten kinetics. Under optimal ionic conditions, but in the absence of NH(4)(+), ouabain (K(I)=117.3+/-3.5 mumol L(-1)) and orthovanadate inhibited up to 67% of the ATPase activity. The inhibition studies performed suggest the presence of F(0)F(1), V- and P-ATPases, but not Na(+)-, K(+)- or Ca(2+)-ATPases as contaminants in the gill microsomal preparation. (Na(+), K(+))-ATPase activity was synergistically modulated by NH(4)(+) and K(+). At 20 mmol L(-1) K(+), a maximum rate of V=290.8+/-14.5 U mg(-1) was seen as NH(4)(+) concentration was increased up to 50 mmol L(-1). However, at fixed NH(4)(+) concentrations, no additional stimulation was found for increasing K(+) concentrations (V=135.2+/-4.1 U mg(-1) and V=236.6+/-9.5 U mg(-1) and for 10 and 30 mmol L(-1) NH(4)(+), respectively). This is the first report to detail ionic modulation of gill (Na(+), K(+))-ATPase in C. vittatus, revealing an asymmetrical, synergistic stimulation of the enzyme by K(+) and NH(4)(+), as yet undescribed for other (Na(+), K(+))-ATPases, and should provide a better understanding of NH(4)(+) excretion in pagurid crabs.


Assuntos
Amônia/metabolismo , Anomuros/metabolismo , Brânquias/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Anomuros/enzimologia , Cinética , Microssomos/enzimologia , Ouabaína/farmacologia , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Vanadatos/farmacologia
8.
Colloids Surf B Biointerfaces ; 46(4): 248-54, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16356698

RESUMO

This work investigates the process of incorporation of a glycosylphosphatidyl inositol (GPI)-anchored alkaline phosphatase into Langmuir monolayers of dimyristoyl phosphatidic acid (DMPA). Three different methods of protein incorporation were assayed. When the protein solution was injected below the air-water interface after formation of the lipid monolayer a micro-heterogeneous distribution of alkaline phosphatase throughout the interface was observed. Adsorption kinetics studied by fluorescence microscopy, associated with surface pressure measurements, led to the proposition of a model in which the protein penetration is modulated by the surface packing of the monolayer and intermolecular interactions occurring between the phospholipid and the protein. At initial surface pressures higher than 20 m Nm(-1), the protein is quickly adsorbed on the interface and the lateral diffusion drives the alkyl chains to turn towards the air phase while the polypeptide moiety faces the aqueous subphase.


Assuntos
Fosfatase Alcalina/química , Glicosilfosfatidilinositóis/química , Membranas Artificiais , Adsorção , Animais , Glicerofosfolipídeos/química , Tamanho da Partícula , Ratos , Propriedades de Superfície , Fatores de Tempo
9.
Langmuir ; 21(9): 4090-5, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15835979

RESUMO

The catalytic activity of a glycosylphosphatidylinositol (GPI)-anchored alkaline phosphatase has been studied in Langmuir phospholipid monolayers at different surface pressures. The enzyme substrate, p-nitrophenyl phosphate, was injected into the subphase of mixed enzyme/lipid Langmuir monolayers. Its hydrolysis product was followed by monitoring the absorbance at 410 nm in situ in the monolayer subphase of the Langmuir trough. Several surface pressures, corresponding to different molecular surface densities, were attained by lateral compression of the monolayers. The morphology of the monolayers, observed by fluorescence microscopy, showed three different types of domains owing to the heterogeneous partition of the enzyme within the mixed enzyme/lipid film. The catalytic activity was modulated by the enzyme surface density, and it increased until a pressure of 18 mN/m was reached, but it decreased significantly when the equilibrium in-plane elasticity (surface compressional modulus) increased more noticeably, resulting in alterations in the interface morphology. A model for the modulation of the enzyme orientation and catalytic activity by lipid/enzyme surface morphology and enzyme surface packing at the air/liquid interface is proposed. The results might have an important impact on the comprehension of the enzymatic activity regulation of GPI-anchored proteins in biomembranes.


Assuntos
Fosfatase Alcalina/química , Glicosilfosfatidilinositóis/química , Membranas Artificiais , Ar , Fosfatase Alcalina/metabolismo , Sítios de Ligação , Catálise , Elasticidade , Glicosilfosfatidilinositóis/metabolismo , Hidrólise , Microscopia de Fluorescência , Nitrofenóis/química , Nitrofenóis/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Conformação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...