Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest New Drugs ; 39(3): 724-735, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409897

RESUMO

Aurora kinase A, a mitotic kinase that is overexpressed in various cancers, is a promising cancer drug target. Here, we performed preclinical characterization of TAS-119, a novel, orally active, and highly selective inhibitor of Aurora A. TAS-119 showed strong inhibitory effect against Aurora A, with an IC50 value of 1.04 nmol/L. The compound was highly selective for Aurora A compared with 301 other protein kinases, including Aurora kinase B. TAS-119 induced the inhibition of Aurora A and accumulation of mitotic cells in vitro and in vivo. It suppressed the growth of various cancer cell lines harboring MYC family amplification and CTNNB1 mutation in vitro. In a xenograft model of human lung cancer cells harboring MYC amplification and CTNNB1 mutation, TAS-119 showed a strong antitumor activity at well-tolerated doses. TAS-119 induced N-Myc degradation and inhibited downstream transcriptional targets in MYCN-amplified neuroblastoma cell lines. It also demonstrated inhibitory effect against tropomyosin receptor kinase (TRK)A, TRKB, and TRKC, with an IC50 value of 1.46, 1.53, and 1.47 nmol/L, respectively. TAS-119 inhibited TRK-fusion protein activity and exhibited robust growth inhibition of tumor cells via a deregulated TRK pathway in vitro and in vivo. Our study indicates the potential of TAS-119 as an anticancer drug, especially for patients harboring MYC amplification, CTNNB1 mutation, and NTRK fusion.


Assuntos
Antineoplásicos , Aurora Quinase A , Neoplasias Pulmonares , Piperidinas , Inibidores de Proteínas Quinases , Receptor trkA , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carga Tumoral/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/uso terapêutico
2.
Mol Cancer Ther ; 19(10): 1981-1991, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788206

RESUMO

TAS-119 is a novel orally active, selective inhibitor of Aurora kinase A identified as a clinical candidate for efficacy testing in combination with taxanes. In vitro, TAS-119 enhanced cell growth inhibition of paclitaxel in multiple human cancer cell lines derived from various tissues, including paclitaxel-resistant cell lines. Interestingly, TAS-119 did not enhance paclitaxel antitumor activity in normal lung diploid fibroblast cell lines WI-38 and MRC5. In vivo, TAS-119 enhanced the antitumor efficacy of paclitaxel and docetaxel in multiple models at doses inhibitory to Aurora A in tumors. Moreover, the drug combination was well tolerated, and TAS-119 did not exaggerate clinically documented side effects of taxanes, neutropenia and neurotoxicity, in rats. The same TAS-119 concentration enhanced the cell growth inhibitory activity of three clinically approved taxanes, paclitaxel, docetaxel, and cabazitaxel. The degree of enhancement calculated as fold of change of the IC50 value for each taxane was almost the same among the three taxanes. We conducted in vitro and in vivo experiments to develop an optimized combination therapy regimen for TAS-119 with paclitaxel/docetaxel. Using in vitro and in vivo models, we tested the drug administration order for TAS-119 combined with paclitaxel and the TAS-119 treatment duration. The best regimen in preclinical models was combining paclitaxel or docetaxel treatment with 4 days of TAS-119 dosing, which was initiated on the same day as the paclitaxel or docetaxel administration or one day later. This information provided guidance for the design of a clinical trial of TAS-119 and paclitaxel or docetaxel combination.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Taxoides/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Células HeLa , Humanos , Camundongos , Camundongos Nus , Ratos
3.
Tumour Biol ; 30(1): 1-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19142034

RESUMO

TAC-101, 4-[3,5-bis(trimethylsilyl)benzamido] benzoic acid, is a synthetic ligand for retinoic acid receptor (RAR)-alpha. Here, we demonstrate the contribution of TAC-101-induced AP-1 interference to stabilization of tumor growth. TAC-101 induced transcriptional activation of RAR, resulting in marked elevation of RARbeta, a representative retinoid response marker, and it also significantly repressed the transcriptional activity of AP-1 in JHH-7 cells. In contrast to JHH-7, JHH-6 is another RARalpha-expressing human hepatocellular carcinoma (HCC) cell line with constitutive activation of AP-1, but it is retinoid insensitive and did not respond to the TAC-101-induced RAR signal. TAC-101 did not inhibit AP-1 activity of the JHH-6 cell line, showing that AP-1 interference by TAC-101 must be in parallel with RAR activation. Interleukin-8 (IL-8), one of the AP-1-regulated factors which correlate with a poor prognosis in HCC patients, was found to be overexpressed in JHH-7 cells. TAC-101 reduced IL-8 production without cytotoxicity and inhibited the progression of HCC in the orthotopic mouse model with decreased tumor IL-8 level. These results suggest that downregulation of the extracellular biomarker for AP-1 interference via the induction of retinoid signals will enhance the pharmacological effect of TAC-101 on HCC and it could be useful as a surrogate biomarker of therapeutic efficacy.


Assuntos
Benzoatos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator de Transcrição AP-1/metabolismo , Compostos de Trimetilsilil/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Fator de Transcrição AP-1/efeitos dos fármacos , Fator de Transcrição AP-1/genética
4.
Genes Dev ; 22(1): 37-49, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18172164

RESUMO

Transcriptional initiation is a key step in the control of mRNA synthesis and is intimately related to chromatin structure and histone modification. Here, we show that the ubiquitylation of H2A (ubH2A) correlates with silent chromatin and regulates transcriptional initiation. The levels of ubH2A vary during hepatocyte regeneration, and based on microarray expression data from regenerating liver, we identified USP21, a ubiquitin-specific protease that catalyzes the hydrolysis of ubH2A. When chromatin is assembled in vitro, ubH2A, but not H2A, specifically represses the di- and trimethylation of H3K4. USP21 relieves this ubH2A-specific repression. In addition, in vitro transcription analysis revealed that ubH2A represses transcriptional initiation, but not transcriptional elongation, by inhibiting H3K4 methylation. Notably, ubH2A-mediated repression was not observed when H3 Lys 4 was changed to arginine. Furthermore, overexpression of USP21 in the liver up-regulates a gene that is normally down-regulated during hepatocyte regeneration. Our studies revealed a novel mode of trans-histone cross-talk, in which H2A ubiquitylation controls the di- and trimethylation of H3K4, resulting in regulation of transcriptional initiation.


Assuntos
Histonas/metabolismo , Ativação Transcricional , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Histona Desacetilases/metabolismo , Histonas/química , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Modelos Genéticos , Sítio de Iniciação de Transcrição
5.
Cancer Sci ; 96(9): 614-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16128747

RESUMO

The Cdc25 dual-specificity phosphatases are key regulators of cell cycle progression through activation of cyclin-dependent kinases (Cdk). Three homologs exist in humans: Cdc25A, Cdc25B, and Cdc25C. Cdc25A and Cdc25B have oncogenic properties and are overexpressed in some types of tumors. Compounds that inhibit Cdc25 dual-specificity phosphatase activity might thus be potent anticancer agents. We screened several hundred compounds in a library using an in vitro phosphatase assay, with colorimetric measurement of the conversion of p-nitrophenyl phosphate (pNPP) to p-nitrophenol by the catalytic domain of recombinant human Cdc25, and discovered TPY-835, which inhibits Cdc25A and Cdc25B activity (IC50 = 5.1 and 5.7 microM, respectively). TPY-835 had mixed inhibition kinetics for Cdc25A and Cdc25B. TPY-835 caused cell cycle arrest in the G1 phase in human lung cancer cells (A549 and SBC-5) but not cell cycle arrest in the G2/M phase. After treatment with TPY-835, the activation of Cdk2 was suppressed and phosphorylation of the retinoblastoma (Rb) protein was decreased in SBC-5 cells. In addition, TPY-835 induced an increase of the sub-G1 phase cell population after 48-72 h treatment. The growth inhibitory effects of TPY-835 against cisplatin (CDDP)-, camptothecin- and 5-FU-resistant cell lines are comparable to the growth inhibitory effect on their parental lines, thus indicating that TPY-835 did not show cross-resistance to these cell lines. These results suggest that TPY-835 is a promising candidate for constructing a novel class of antitumor agents that can control the cell cycle progression of cancer cells.


Assuntos
Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Neoplasias Pulmonares/patologia , Pirazóis/farmacologia , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/metabolismo , Proteínas de Ciclo Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21 , Resistencia a Medicamentos Antineoplásicos , Humanos , Cinética , Fosforilação , Proteína do Retinoblastoma/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...