Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38432777

RESUMO

8-Hydroxydeoxyguanosine (8-OHdG) is well known not only as an effective biomarker of oxidative stress but also as a mutagenic DNA modification. Incorporation of dAMP at the opposite site of 8-OHdG induces G>T or A>C transversions. However, in vivo analyses of gene mutations caused by potassium bromate (KBrO3), which can induce 8-OHdG at carcinogenic target sites, showed that G>T was prominent in the small intestines of mice, but not in the kidneys of rats. Because KBrO3 was a much clearer carcinogen in the kidneys of rats, detailed analyses of gene mutations in the kidney DNA of rats treated with KBrO3 could improve our understanding of oxidative stress-mediated carcinogenesis. In the current study, site-specific reporter gene mutation assays were performed in the kidneys of gpt delta rats treated with KBrO3. Groups of 5 gpt delta rats were treated with KBrO3 at concentrations of 0, 125, 250, or 500 ppm in the drinking water for 9 weeks. At necropsy, the kidneys were macroscopically divided into the cortex and medulla. 8-OHdG levels in DNA extracted from the cortex were dramatically elevated at concentrations of 250 ppm and higher compared with those from the medulla. Cortex-specific increases in mutant frequencies in gpt and red/gam genes were found at 500 ppm. Mutation spectrum and sequence analyses of their mutants demonstrated significant elevations in A>T transversions in the gpt gene and single base deletions at guanine or adenine in the gpt or red/gam genes. While A>T transversions and single base deletions of adenine may result from the oxidized modification of adenine, the contribution of 8-OHdG to gene mutations was limited despite possible participation of the 8-OHdG repair process in guanine deletion.


Assuntos
Bromatos , DNA , Rim , Ratos , Camundongos , Animais , 8-Hidroxi-2'-Desoxiguanosina , Mutação , Adenina , Carcinogênese , Carcinógenos , Guanina
2.
Genes Environ ; 46(1): 7, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378650

RESUMO

BACKGROUND: Carbendazim (methyl 2-benzimidazolecarbamate, CASRN: 10605-21-7) exhibits spindle poisoning effects and is widely used as a fungicide. With respect to genotoxicity, carbendazim is deemed to be non-mutagenic in vitro, but it causes indicative DNA damage in vivo and chromosome aberrations in vitro and in vivo. In this study, we examined the mutagenicity of carbendazim in vivo. RESULTS: MutaMice were treated with carbendazim orally at doses of 0 (corn oil), 250, 500, and 1,000 mg/kg/day once a day for 28 days. A lacZ assay was used to determine the mutant frequency (MF) in the liver and glandular stomach of mice. MutaMice were administered up to the maximum dose recommended by the Organization for Economic Co-operation and Development Test Guidelines for Chemicals No. 488 (OECD TG488). The lacZ MFs in the liver and glandular stomach of carbendazim-treated animals were not significantly different from those in the negative control animals. In contrast, positive control animals exhibited a significant increase in MFs in both the liver and glandular stomach. CONCLUSIONS: Carbendazim is non-mutagenic in the liver and glandular stomach of MutaMice following oral treatment.

3.
Environ Mol Mutagen ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942839

RESUMO

The in vivo working group (WG) considered three topics: acceptable maximum doses for negative erythrocyte micronucleus (MN) tests, validation status of MN assays in non-hematopoietic tissues, and nuisance factors in the comet assay. The WG reached agreement on many issues, including: negative erythrocyte MN studies should be acceptable if dosing is conducted to Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 474 recommendations and if sufficient bone marrow exposure is demonstrated; consensus on the evidence required to demonstrate "sufficient" exposure was not reached. The liver MN test using six-week-old rats is sufficiently validated to develop an OECD TG, but the impact of animal age warrants additional study. Ki-67 is a reliable marker for cellular proliferation in hepatocytes. The gastrointestinal tract MN test is useful for detecting poorly absorbed or rapidly degraded aneugens, and for genotoxic metabolites formed in the colon. Although current validation data are insufficient to support the development of an OECD TG, the methodologies are sufficient to consider as an appendix to OECD TG474. Comparison of comet assay results to laboratory historical control data (HCD) should not be used in data evaluation, unless the HCD distribution is demonstrated to be stable and the predominant source of HCD variation is due to animal, not study, factors. No universally acceptable negative control limit for any tissue was identified. Methodological differences in comet studies can result in variable data interpretations; more data are required before best practice recommendations can be made. Hedgehogs alone are unreliable indicators of cytotoxicity and additional investigations into cytotoxicity markers are required.

4.
Genes Environ ; 45(1): 29, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990244

RESUMO

BACKGROUND: tert-Butyl hydroperoxide (TBHP; CAS 75-91-2), a hydroperoxide, is mainly used as a polymerization initiator to produce polyethylene, polyvinyl chloride, and unsaturated polyester. It is a high-production chemical, widely used in industrial countries, including Japan. TBHP is also used as an additive for the manufacturing of food utensils, containers, and packaging (UCP). Therefore, there could be consumer exposure through oral intake of TBHP eluted from UCPs. TBHP was investigated in various in vitro and in vivo genotoxicity assays. In Ames tests, some positive results were reported with and/or without metabolic activation. As for the mouse lymphoma assay, the positive result was reported, regardless of the presence or absence of metabolic activation enzymes. The results of some chromosomal aberrations test and comet assay in vitro also demonstrated the genotoxic positive results. On the other hand, in in vivo tests, there are negative results in the bone marrow micronucleus test of TBHP-administered mice by single intravenous injection and the bone marrow chromosomal aberration test using rats exposed to TBHP for 5 days by inhalation. Also, about dominant lethal tests, the genotoxic positive results appeared. In contrast, there is little information about in vivo mutagenicity and no information about carcinogenicity by oral exposure. RESULTS: We conducted in vivo gene mutation assay using MutaMice according to the OECD Guidelines for the Testing of Chemicals No. 488 to investigate in vivo mutagenicity of TBHP through oral exposure. After repeated dosing for 28 days, there were no significant differences in the mutant frequencies (MFs) of the liver and glandular stomach up to 300 mg/kg/day (close to the maximum tolerable dose (MTD)). The positive and negative controls produced the expected responses. CONCLUSIONS: These findings show that orally administrated TBHP is not mutagenic in the mouse liver and glandular stomach under these experimental conditions.

5.
Nucleic Acids Res ; 51(21): e109, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870450

RESUMO

Error-corrected next-generation sequencing (ecNGS) is an emerging technology for accurately measuring somatic mutations. Here, we report paired-end and complementary consensus sequencing (PECC-Seq), a high-accuracy ecNGS approach for genome-wide somatic mutation detection. We characterize a novel 2-aminoimidazolone lesion besides 7,8-dihydro-8-oxoguanine and the resulting end-repair artifacts originating from NGS library preparation that obscure the sequencing accuracy of NGS. We modify library preparation protocol for the enzymatic removal of end-repair artifacts and improve the accuracy of our previously developed duplex consensus sequencing method. Optimized PECC-Seq shows an error rate of <5 × 10-8 with consensus bases compressed from approximately 25 Gb of raw sequencing data, enabling the accurate detection of low-abundance somatic mutations. We apply PECC-Seq to the quantification of in vivo mutagenesis. Compared with the classic gpt gene mutation assay using gpt delta transgenic mice, PECC-Seq exhibits high sensitivity in quantitatively measuring dose-dependent mutagenesis induced by Aristolochic acid I (AAI). Moreover, PECC-Seq specifically characterizes the distinct genome-wide mutational signatures of AAI, Benzo[a]pyrene, N-Nitroso-N-ethylurea and N-nitrosodiethylamine and reveals the mutational signature of Quinoline in common mouse models. Overall, our findings demonstrate that high-accuracy PECC-Seq is a promising tool for genome-wide somatic mutagenesis quantification and for in vivo mutagenicity testing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Animais , Camundongos , Consenso , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos Transgênicos , Mutagênese/genética , Mutação , Análise de Sequência de DNA/métodos , Masculino
6.
Genes Environ ; 45(1): 12, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041654

RESUMO

BACKGROUND: Styrene (CAS 100-42-5) is widely used as polystyrene and acrylonitrile-butadiene-styrene resin such as plastic, rubber, and paint. One of the primary uses of styrene is food utensils and containers, but a small amount of styrene transferred into food can be ingested by eating. Styrene is metabolized into styrene 7,8-oxide (SO). SO is mutagenic in bacteria and mouse lymphoma assays. It is clastogenic in cultured mammalian cells. However, styrene and SO are not clastogenic/aneugenic in rodents, and no rodent in vivo gene mutation studies were identified. METHODS: To investigate the mutagenicity of orally administered styrene, we used the transgenic rodent gene mutation assay to perform an in vivo mutagenicity test (OECD TG488). The transgenic MutaMouse was given styrene orally at doses of 0 (corn oil; negative control), 75, 150, and 300 mg/kg/day for 28 days, and mutant frequencies (MFs) were determined using the lacZ assay in the liver and lung (five male mice/group). RESULTS: There were no significant differences in the MFs of the liver and lung up to 300 mg/kg/day (close to maximum tolerable dose (MTD)), when one animal with extremely high MFs that were attributed to an incidental clonal mutation was omitted. Positive and negative controls produced the expected results. CONCLUSIONS: These findings show that styrene is not mutagenic in the liver and lung of MutaMouse under this experimental condition.

7.
Toxicol Rep ; 9: 1008-1012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518409

RESUMO

We assessed the genotoxicity of 30 food-flavoring chemicals used in Japan that have not been investigated before. These 30 food-flavoring chemicals have representative chemical structures belonging to 18 chemical classes. The Ames and chromosomal aberration (CA) tests (in vitro tests) were first conducted in accordance with the "Food Additive Risk Assessment Guidelines" of the Japan Food Safety Commission. If the in vitro test yielded a positive result, an in vivo micronucleus test or a transgenic mouse gene mutation assay was performed to verify the in vitro test results. Of the 30 food-flavoring chemicals, 3 yielded a positive result in both Ames and CA tests. Another 11 chemicals yielded positive results in the CA test. However, none of the chemicals yielding positive in vitro test results yielded positive results in the in vivo tests. These findings indicate no genotoxicity concerns of the food-flavoring chemicals belonging to the abovementioned 18 chemical classes used in Japan unless there are other structural modifications.

8.
Nihon Yakurigaku Zasshi ; 157(4): 265-270, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35781458

RESUMO

Since mutagenicity which can induce permanent transmissible changes in the structure of the genetic material is one of the major causes of cancer, research for genotoxicity including mutagenicity has focused on cancer hazard identification. Thus, it has been assumed that there was no threshold in mutagenesis. On the other hand, tumor development induced by not only non-genotoxic carcinogen but also genotoxic carcinogens will likely show a practical threshold. Therefore, statistical evaluation can provide value of the benchmark dose lower confidence limit (BMDL) calculated by approaches for the determination of genetic toxicity point of departure (PoD). In addition, disruption of epigenetic regulation which affect transcription through alteration of chromatin structure is considered to be important in future genotoxicity research. Taking into account benchmark dose or epigenetics will help improve assessment of genotoxicity, which offer promising insight into understanding genomic instability. Overall, this review presents current trends for future assessments of genotoxicity.


Assuntos
Epigênese Genética , Neoplasias , Instabilidade Genômica , Humanos , Testes de Mutagenicidade , Medição de Risco
9.
Genes Environ ; 43(1): 43, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627396

RESUMO

BACKGROUND: Gene mutations induced in germ cells may be transmitted to the next generation and cause adverse effects such as genetic diseases. Certain mutations may result in infertility or death in early development. Thus, the mutations may not be inheritable. However, the extent to which point mutations in male germ cells are transmitted to the next generation or eliminated during transmission is largely unknown. This study compared mutation frequencies (MFs) in sperm of N-ethyl-N-nitrosourea (ENU)-treated gpt delta mice and de novo MFs in the whole exome/genome of their offspring. RESULTS: Male gpt delta mice were treated with 10, 30, and 85 mg/kg of ENU (i.p., weekly × 2) and mated with untreated females to generate offspring. We previously reported a dose-dependent increase in de novo MFs in the offspring estimated by whole exome sequencing (WES) (Mutat. Res., 810, 30-39, 2016). In this study, gpt MFs in the sperm of ENU-treated mice were estimated, and the MFs per reporter gene were converted to MFs per base pair. The inherited de novo MFs in the offspring (9, 26 and 133 × 10- 8/bp for 10, 30, and 85 mg/kg ENU-treated groups, respectively) were comparable to those of the converted gpt MFs in the sperm of ENU-treated fathers (6, 16, and 69 × 10- 8/bp). It indicated that the gpt MFs in the ENU-treated father's sperm were comparable to the inherited de novo MFs in the offspring as estimated by WES. In addition, de novo MFs in the offspring of 10 mg/kg ENU-treated and control fathers were estimated by whole genome sequencing (WGS), because WES was not sufficiently sensitive to detect low background MF. The de novo MF in the offspring of the ENU-treated fathers was 6 × 10- 8/bp and significantly higher than that of the control (2 × 10- 8/bp). There were no significant differences in de novo MFs between gene-coding and non-coding regions. WGS analysis was able to detect ENU-induced characteristic de novo base substitutions at a low dose group. CONCLUSIONS: Despite a difference between exome/genome and exogenous reporter genes, the results indicated that ENU-induced point mutations in male germ cells could be transmitted to the next generation without severe selection.

10.
Genes Environ ; 43(1): 30, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271990

RESUMO

BACKGROUND: Perillaldehyde and cinnamaldehyde are natural substances found in plants that are used as flavoring ingredients. Due to the α,ß-unsaturated aldehydes in their structures, these compounds are expected to be DNA reactive. Indeed, several reports have indicated that perillaldehyde and cinnamaldehyde show positive in in vitro and in vivo genotoxicity tests. However, their genotoxic potentials are currently disputed. To clarify the mutagenicity of perillaldehyde and cinnamaldehyde, we conducted in silico quantitative structure-activity relationship (QSAR) analysis, in vitro Ames tests, and in vivo transgenic rodent gene mutation (TGR) assays. RESULTS: In Ames tests, perillaldehyde was negative and cinnamaldehyde was positive; these respective results were supported by QSAR analysis. In TGR assays, we treated Muta™ Mice with perillaldehyde and gpt-delta mice with cinnamaldehyde up to the maximum tested doses (1000 mg/kg/day). There was no increase in gene mutations in the liver, glandular stomach, or small intestine following all treatments except the positive control (N-ethyl-N-nitrosourea at 100 mg/kg/day). CONCLUSIONS: These data clearly show no evidence of in vivo mutagenic potentials of perillaldehyde and cinnamaldehyde (administered up to 1000 mg/kg/day) in mice; however, cinnamaldehyde is mutagenic in vitro.

11.
Genes Environ ; 43(1): 27, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225823

RESUMO

BACKGROUND: Base pair mismatches in genomic DNA can result in mutagenesis, and consequently in tumorigenesis. To investigate how mismatch repair deficiency increases mutagenicity under oxidative stress, we examined the type and frequency of mutations arising in the mucosa of the small intestine of mice carrying a reporter gene encoding guanine phosphoribosyltransferase (gpt) and in which the Msh2 gene, which encodes a component of the mismatch repair system, was either intact (Msh2+/+::gpt/0; Msh2-bearing) or homozygously knockout (KO) (Msh2-/-::gpt/0; Msh2-KO). RESULTS: Gpt mutant frequency in the small intestine of Msh2-KO mice was about 10 times that in Msh2-bearing mice. Mutant frequency in the Msh2-KO mice was not further enhanced by administration of potassium bromate, an oxidative stress inducer, in the drinking water at a dose of 1.5 g/L for 28 days. Mutation analysis showed that the characteristic mutation in the small intestine of the Msh2-KO mice was G-to-A transition, irrespective of whether potassium bromate was administered. Furthermore, administration of potassium bromate induced mutations at specific sites in gpt in the Msh2-KO mice: G-to-A transition was frequently induced at two known sites of spontaneous mutation (nucleotides 110 and 115, CpG sites) and at nucleotides 92 and 113 (3'-side of 5'-GpG-3'), and these sites were confirmed to be mutation hotspots in potassium bromate-administered Msh2-KO mice. Administration of potassium bromate also induced characteristic mutations, mainly single-base deletion and insertion of an adenine residue, in sequences of three to five adenine nucleotides (A-runs) in Msh2-KO mice, and elevated the overall proportion of single-base deletions plus insertions in Msh2-KO mice. CONCLUSIONS: Our previous study revealed that administration of potassium bromate enhanced tumorigenesis in the small intestine of Msh2-KO mice and induced G-to-A transition in the Ctnnb1 gene. Based on our present and previous observations, we propose that oxidative stress under conditions of mismatch repair deficiency accelerates the induction of single-adenine deletions at specific sites in oncogenes, which enhances tumorigenesis in a synergistic manner with G-to-A transition in other oncogenes (e.g., Ctnnb1).

12.
Genes Environ ; 43(1): 25, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34158118

RESUMO

BACKGROUND: Gene mutation assays in transgenic rodents are useful tools to investigate in vivo mutagenicity in a target tissue. Using a lambda EG10 transgene containing reporter genes, gpt delta transgenic mice and rats have been developed to detect point mutations and deletions. The transgene is integrated in the genome and can be rescued through an in vitro packaging reaction. However, the packaging efficiency is lower in gpt delta rats than in mice, because of the transgene in gpt delta rats being heterozygous and in low copy number. To improve the packaging efficiency, we herein describe a newly developed homozygous gpt delta rat strain. RESULTS: The new gpt delta rat has a Wistar Hannover background and has been successfully maintained as homozygous for the transgene. The packaging efficiency in the liver was 4 to 8 times higher than that of existing heterozygous F344 gpt delta rats. The frequency of gpt point mutations significantly increased in the liver and bone marrow of N-nitroso-N-ethylurea (ENU)- and benzo[a]pyrene (BaP)-treated rats. Spi- deletion frequencies significantly increased in the liver and bone marrow of BaP-treated rats but not in ENU-treated rats. Whole genome sequencing analysis identified ≥ 30 copies of lambda EG10 transgenes integrated in rat chromosome 1. CONCLUSIONS: The new homozygous gpt delta rat strain showed a higher packaging efficiency, and could be useful for in vivo gene mutation assays in rats.

13.
Genes Environ ; 43(1): 16, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931133

RESUMO

BACKGROUND: Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure-activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model. RESULTS: In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals' Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model "StarDrop NIHS 834_67" showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools. CONCLUSIONS: A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.

14.
Mutagenesis ; 36(2): 155-164, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33544859

RESUMO

DNA polymerase zeta (Polζ) is a heterotetramer composed of the catalytic subunit Rev3l, Rev7 and two subunits of Polδ (PolD2/Pol31 and PolD3/Pol32), and this polymerase exerts translesion DNA synthesis (TLS) in yeast. Because Rev3l knockout results in embryonic lethality in mice, the functions of Polζ need further investigation in vivo. Then, we noted the two facts that substitution of leucine 979 of yeast Rev3l with methionine reduces Polζ replication fidelity and that reporter gene transgenic rodents are able to provide the detailed mutation status. Here, we established gpt delta mouse knocked in the constructed gene encoding methionine instead of leucine at residue 2610 of Rev3l (Rev3l L2610M gpt delta mice), to clarify the role of Polζ in TLS of chemical-induced bulky DNA adducts in vivo. Eight-week-old gpt delta mice and Rev3l L2610M gpt delta mice were treated with benzo[a]pyrene (BaP) at 0, 40, 80, or 160 mg/kg via single intraperitoneal injection. At necropsy 31 days after treatment, lungs were collected for reporter gene mutation assays. Although the gpt mutant frequency was significantly increased by BaP in both mouse genotypes, it was three times higher in Rev3l L2610M gpt delta than gpt delta mice after treatment with 160 mg/kg BaP. The frequencies of G:C base substitutions and characteristic complex mutations were significantly increased in Rev3l L2610M gpt delta mice compared with gpt delta mice. The BaP dose-response relationship suggested that Polζ plays a central role in TLS when protective mechanisms against BaP mutagenesis, such as error-free TLS, are saturated. Overall, Polζ may incorporate incorrect nucleotides at the sites opposite to BaP-modified guanines and extend short DNA sequences from the resultant terminal mismatches only when DNA is heavily damaged.


Assuntos
Benzo(a)pireno/toxicidade , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA/metabolismo , Mutagênese , Alanina Transaminase/genética , Animais , Domínio Catalítico , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Feminino , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Genes Environ ; 43(1): 4, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597036

RESUMO

BACKGROUND: Acrylamide (AA) is a rodent carcinogen and classified by the IARC into Group 2A (probable human carcinogen). AA has been reported to induce mutations in transgenic rodent gene mutation assays (TGR assays), the extent of which is presumed to depend on exposure length and the duration of expression after exposure. In particular, it is not clear in germ cells. To investigate mutagenicity with AA in somatic and germ cells at different sampling times, we conducted TGR assays using gpt delta transgenic mice. RESULTS: The male gpt delta mice at 8 weeks of age were treated with AA at 7.5, 15 and 30 mg/kg/day by gavage for 28 days. Peripheral blood was sampled on the last day of the treatment for micronucleus tests and tissues were sampled for gene mutation assays at day 31 and day 77, those being 3 and 49 days after the final treatment (28 + 3d and 28 + 49d), respectively. Another group of mice was treated with N-Ethyl-N-nitrosourea (ENU) at 50 mg/kg/day by intraperitoneal administration for 5 consecutive days and tissues were sampled at the day 31 and day 77 (5 + 26d and 5 + 72d). Frequencies of micronucleated erythrocytes in the peripheral blood significantly increased at AA doses of 15 and 30 mg/kg/day. Two- to three-fold increases in gpt mutation frequencies (MFs) compared to vehicle control were observed in the testes and lung treated with 30 mg/kg/day of AA at both sampling time. In the sperm, the gpt MFs and G:C to T:A transversions were significantly increased at 28 + 3d, but not at 28 + 49d. ENU induced gpt mutations in these tissues were examined at both 5 + 26d and 5 + 72d. A higher mutant frequency in the ENU-treated sperm was observed at 5 + 72d than that at 5 + 26d. CONCLUSIONS: The gpt MFs in the testes, sperm and lung of the AA-treated mice were determined and compared between different sampling times (3 days or 49 days following 28 day-treatment). These results suggest that spermatogonial stem cells are less sensitive to AA mutagenicity under the experimental condition. Prolonged expression time after exposure to AA to detect mutagenicity may be effective in somatic cells but not in germ cells.

16.
Mutagenesis ; 36(1): 87-94, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367723

RESUMO

As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.


Assuntos
Ácidos Aristolóquicos/toxicidade , Adutos de DNA , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Taxa de Mutação , Pentosiltransferases/metabolismo , Animais , Benchmarking , Proteínas de Escherichia coli/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Pentosiltransferases/genética
17.
Genes Environ ; 42: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489484

RESUMO

BACKGROUND: DNA-dependent protein kinase (DNA-PK), consisting of a Ku heterodimer (Ku70/80) and a large catalytic subunit (DNA-PKcs), plays an important role in the repair of DNA double-strand breaks via non-homologous end-joining (NHEJ) in mammalian cells. Severe combined immunodeficient (scid) mice carry a mutation in the gene encoding DNA-PKcs and are sensitive to ionizing radiation. To examine the roles of DNA-PKcs in the generation of deletion mutations in vivo, we crossed scid mice with gpt delta transgenic mice for detecting mutations. RESULTS: The scid and wild-type (WT) gpt delta transgenic mice were irradiated with a single X-ray dose of 10 Gy, and Spi- mutant frequencies (MFs) were determined in the brain and spleen 2 days after irradiation. Irradiation with X-rays significantly enhanced Spi- MF in both organs in the scid and WT mice. The MFs in the brain of irradiated scid mice were significantly lower than those in WT mice, i.e., 2.9 ± 1.0 × 10- 6 versus 5.0 ± 1.1 × 10- 6 (P < 0.001), respectively. In the spleen, however, both mouse strains exhibited similar MFs, i.e., 4.1 ± 1.8 × 10- 6 versus 4.8 ± 1.4 × 10- 6. Unirradiated scid and WT mice did not exhibit significant differences in MFs in either organ. CONCLUSIONS: DNA-PKcs is unessential for the induction of deletion mutations in the spleen, while it plays a role in this in the brain. Therefore, the contribution of DNA-PKcs to NHEJ may be organ-specific.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32247553

RESUMO

Tumorigenesis induced by oxidative stress is thought to be initiated by mutagenesis, but via an indirect mechanism. The dose-response curves for agents that act by this route usually show a threshold, for unknown reasons. To gain insight into these phenomena, we have analyzed the dose response for mutagenesis induced by the oral administration of potassium bromate, a typical oxidative-stress-generating agent, to gpt delta mice. The agent was given orally for 90 d to either Nrf2+ or Nrf2-knockout (KO) mice and mutants induced in the small intestine were analyzed. In Nrf2+mice, the mutant frequency was significantly greater than in the vehicle controls at a dose of 0.6 g/L but not at 0.2 g/L, indicating that a practical threshold for mutagenesis lies between these doses. At 0.6 g/L, the frequencies of G-to-T transversions (landmark mutations for oxidative stress) and G-to-A transitions were significantly elevated. In Nrf2-KO mice, too, the total mutant frequency was increased only at 0.6 g/L. G-to-T transversions are likely to have driven tumorigenesis in the small intestine. A site-specific G-to-T transversion at guanine (nucleotide 406) in a 5'-TGAA-3' sequence in gpt, and our primer extension reaction showed that formation of the oxidative DNA base modification 8-oxo-deoxyguanosine (8-oxo-dG) at nucleotide 406 was significantly increased at doses of 0.6 and 2 g/L in the gpt delta mice. In the Apc oncogene, guanine residues in the same or similar sequences (TGAA or AGAA) are highly substituted by thymine (G-to-T transversions) in potassium bromate-induced tumors. We propose that formation of 8-oxo-dG in the T(A)GAA sequence is an initiating event in tumor formation in the small intestine in response to oxidative stress.


Assuntos
Bromatos/toxicidade , Mutagênese/genética , Estresse Oxidativo/genética , Pentosiltransferases/genética , 8-Hidroxi-2'-Desoxiguanosina/genética , Administração Oral , Animais , Bromatos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , DNA/efeitos dos fármacos , DNA/genética , Relação Dose-Resposta a Droga , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Mutagênese/efeitos dos fármacos , Mutação , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-32087857

RESUMO

Human risk assessment of the toxic potency of chemicals typically includes genotoxicity assays for predicting carcinogenicity. Gene mutation frequency and chromosomal aberration are two major genotoxicity endpoints in standardized in vitro and in vivo assays. The weight-of-evidence approach in risk assessment is more focused on in vivo assay results; however, animal welfare considerations are aimed at the reduction, replacement, and refinement (3R's) of animal experiments, including a reduction in the number of experimental animals. Proposals to reduce experimental animals in genotoxicity testing include the incorporation of genotoxicity endpoint(s) into other toxicological studies and the combination of two or more assays detecting different genotoxicity endpoints in the same animals. In this study, we used 1,2-dimethylhydrazine as a model chemical of colon carcinogen to assess gene mutation frequency and chromosomal aberration in vivo simultaneously. Specifically, a gene mutation frequency assay was combined with a multiple-organ micronucleus test (peripheral blood, bone marrow, liver, and colon) in F344 gpt delta transgenic rats. Both gpt mutant frequency and micronucleated cell frequency significantly increased in colon and liver but not in bone marrow. Interestingly, we found that the colon carcinogen induced both gene mutations and micronuclei in the targeted colon tissue. Thus, we demonstrated that the mechanism of a carcinogen could be derived from an animal experiment using a lower number of experimental animals as currently recommended. Moreover, a significant increase in mutant frequency in colon and liver was already observed on the first day after treatment completion, as well as on the third day, which is the guideline-recommended period. Thus, this endpoint is compatible with other genotoxicity assays. We confirmed that performing the micronucleus assay in combination with a gene mutation assay in F344 gpt delta transgenic rats is useful to evaluate different genotoxic endpoints simultaneously in the same animals, which reduces the number of experimental animals.


Assuntos
1,2-Dimetilidrazina/toxicidade , Carcinógenos/toxicidade , Aberrações Cromossômicas/efeitos dos fármacos , Neoplasias do Colo/diagnóstico , Determinação de Ponto Final , Testes de Mutagenicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Taxa de Mutação , Especificidade de Órgãos , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
20.
Artigo em Inglês | MEDLINE | ID: mdl-31708072

RESUMO

As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.


Assuntos
Aneugênicos/toxicidade , Aneuploidia , Carcinogênese , Doenças Genéticas Inatas/patologia , Células Germinativas/efeitos dos fármacos , Animais , Células Germinativas/patologia , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...