Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(1): 65, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329265

RESUMO

The temporal dynamics of soil respiration change in response to different land management practices are not well documented. This study investigated the effects of soil bunds on the monthly and diurnal dynamics of soil respiration rates in the highlands of the Upper Blue Nile basin in Ethiopia. Six plots (with and without soil bunds, three replicates) were used for measurement of seasonal soil respiration, and 18 plots were used for measurement of diurnal soil respiration. We collected seasonal variation data on a monthly basis from September 2020 to August 2021. Diurnal soil respiration data were collected four times daily (5 a.m., 11 a.m., 5 p.m., and 11 p.m.) for 2 weeks from 16 to 29 September 2021. A Wilcoxon signed-rank test showed that seasonal soil respiration rates differed significantly (p < 0.05) between soil bund and control plots in all seasons. In plots with soil bunds, seasonal soil respiration rates were lowest in February (1.89 ± 0.3 µmol CO2 m-2 s-1, mean ± SE) and highest in October (14.54 ± 0.5 µmol CO2 m-2 s-1). The diurnal soil respiration rate was significantly (p < 0.05) higher at 11 a.m. than at other times, and was lowest at 5 a.m. Seasonal variation in soil respiration was influenced by soil temperature negatively and moisture positively. Diurnal soil respiration was significantly affected by soil temperature but not by soil moisture. Further study is required to explore how differences in soil microorganisms between different land management practices affect soil respiration rates.


Assuntos
Dióxido de Carbono , Solo , Estações do Ano , Dióxido de Carbono/análise , Conservação dos Recursos Naturais , Etiópia , Monitoramento Ambiental , Temperatura , Agricultura , Respiração , China
2.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684334

RESUMO

The pyrolysis of biomass material results in pyroligneous acid (PA) and biochar, among other by-products. In agriculture, PA is recognized as an antimicrobial agent, bio-insecticide, and bio-herbicide due to antioxidant activity provided by a variety of constituent materials. Application of PA to crop plants and soil can result in growth promotion, improved soil health, and reduced reliance on polluting chemical crop inputs. More detailed information regarding chemical compound content within PA and identification of optimal chemical profiles for growth promotion in different crop species is essential for application to yield effective results. Additionally, biochar and PA are often applied in tandem for increased agricultural benefits, but little is known regarding the optimal proportion of each crop input. This work reports on the effect of combined applications of different proportions of PA (200- and 800-fold dilutions) and chemical fertilizer rates (100%, 75%, 50%, and 0%) in the presence or absence of biochar on Komatsuna (Brassica rapa var. perviridis, Japanese mustard spinach) plant growth. To elucidate the chemical composition of the applied PA, four different spectroscopic measurements of fluorescence excitation were utilized for analysis-excitation-emission matrix, ion chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. It was determined that PA originating from pyrolysis of Japanese pine wood contained different classes of biostimulants (e.g., tryptophan, humic acid, and fulvic acid), and application to Komatsuna plants resulted in increased growth when applied alone, and in different combinations with the other two inputs. Additionally, application of biochar and PA at the higher dilution rate increased leaf accumulation of nutrients, calcium, and phosphorus. These effects reveal that PA and biochar are promising materials for sustainable crop production.


Assuntos
Carvão Vegetal , Solo , Agricultura , Carvão Vegetal/química , Fertilizantes , Solo/química , Terpenos
3.
Sci Total Environ ; 786: 147450, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33965819

RESUMO

Improving our understanding of how different land uses and management practices affect soil nutrient outflows in sub-Saharan Africa could aid in developing sustainable practices. The objective of this study was to analyse the variation in outflows of soil total nitrogen (TN) and available phosphorus (Pav) as influenced by land use types (cropland, grazing land, and bushland) and land management practices (soil bunds for cropland and exclosures for non-croplands) in the three contrasting agro-ecological zones of the Upper Blue Nile basin, Ethiopia. Field data were collected for TN and Pav outflows by water erosion (Eo), leaching (Lo), product harvest (Ho), and gaseous emissions (Go) from 18 runoff plots (30 m × 6 m) for two years (2018-2019). TN and Pav losses significantly varied (p < 0.05, p < 0.01) among agro-ecological zones, land use types, and management practices. Losses of TN ranged from 39.6 to 55.5 kg ha-1 yr-1 and those of Pav from 4.1 to 5.9 kg ha-1 yr-1, with a total replacement cost of US$26-38 ha-1 yr-1. Nutrient losses and cost generally increased from lowland (Dibatie) to midland (Aba Gerima) to highland (Guder), although the highland and midland sites did not differ significantly (p > 0.05) in nutrient losses. Cropland showed significantly higher TN and Pav losses than other land use types, but TN loss did not differ significantly between grazing and bushland. In all land use types at all sites, the magnitude of nutrient losses was Ho >Eo >Lo >Go. In plots with land management practices, TN and Pav losses associated with Eo, Lo, and Go were reduced on average by 44-76%, 9-47%, and 1%-36%, respectively. These practices were most effective to reduce Eo nutrient losses. Further study is required to analyzing the soil nutrient balance and identify priority areas for implementing mitigation measures.

4.
Environ Monit Assess ; 191(12): 726, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701315

RESUMO

Social forestry policies grant local communities the right to access protected forest areas contingent upon certain governmental criteria. However, the adoption of social forestry is known to alter land-cover patterns and promote soil erosion. This study assessed the water quality of Sekampung Hulu and Sangharus Rivers in Lampung, Indonesia, based on their total suspended solid (TSS) concentrations. Subsequently, the extent of soil erosion in the two watersheds was determined, and best management practices (BMPs) were recommended for the study area. Water sampling was conducted in 2016 to estimate TSS levels in the two watersheds. Additionally, the Universal Soil Loss Equation (USLE) was integrated with an ArcGIS model to evaluate soil erosion in the watersheds. The results indicated that TSS concentrations in the Sekampung Hulu and Sangharus Rivers ranged from 36-813 mg L-1 and 16-146 mg L-1, respectively. Further, the average soil erosion rates in the Sekampung Hulu and Sangharus watersheds were 12.5 Mg ha-1 year-1 and 5.6 Mg ha-1 year-1, respectively. The results indicated that young coffee trees increased soil erosion rates, especially in areas characterized by vulnerable soil. The USLE results concurred with the TSS analysis and indicated higher erosion rates for the Sekampung Hulu watershed than the Sangharus watershed. The application of BMPs, including conversion to agroforestry coffee, cover crops, and contour systems, was effective in reducing soil erosion in both the Sekampung Hulu and Sangharus watersheds.


Assuntos
Conservação dos Recursos Naturais/métodos , Florestas , Fenômenos Geológicos , Solo , Produtos Agrícolas , Monitoramento Ambiental/métodos , Agricultura Florestal , Sistemas de Informação Geográfica , Indonésia , Rios , Árvores
5.
Sci Total Environ ; 689: 347-365, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31277003

RESUMO

Land use/land cover (LULC) change and climate variability are two major factors controlling hydrological responses. The present study analyzed the separate and combined effects of these two factors on annual surface runoff and evapotranspiration (ET) after validating the selected models in three drought-prone watersheds of the Upper Blue Nile basin: Kasiry (highland), Kecha (midland), and Sahi (lowland). LULC maps were produced from aerial photographs and very-high-resolution satellite images from 1982, 2005/06 and 2016/17. During 1982-2016/17 the area covered by natural vegetation showed dramatic decreases, ranging from 60.2% in Kasiry to 51.8% in Sahi. In contrast, increases in cultivated land ranged from 36.7% in Kasiry to 279.6% in Sahi; the smaller increase in Kasiry resulted from the conversion of a portion of the cultivated land to an Acacia decurrens plantation after 2006. The observed LULC changes over the study period resulted in runoff increases ranging from 4% in Kecha to 28.7% in Kasiry. Climate variability in terms of annual rainfall had no significant effect on estimated runoff; whereas both LULC change and climate variability had significant effect on estimated ET. Though climate variability increased ET from 33.6% in Kecha to 42.1% in Kasiry, the LULC change related to the reduction in natural vegetation had an offsetting effect, which led to overall decreases in ET ranging from 15.8% in Kasiry to 32.8% in Kecha watershed. As changes in LULC and climate are expected to intensify in the future, it is important to study further hydrological responses considering these changes to devise future sustainable land and water management strategies.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Movimentos da Água , Etiópia , Hidrologia
6.
Sci Total Environ ; 648: 1462-1475, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340291

RESUMO

Understanding the effect of land use and sustainable land management (SLM) practices on runoff and soil loss (SL) is essential for adopting suitable strategies to control soil erosion. The purpose of this study was to analyze runoff and SL from different land use types and evaluate the effectiveness of different SLM practices through monitoring runoff and sediment from 42 runoff plots (30 m × 6 m) in different agro-ecologies of the Upper Blue Nile basin of Ethiopia. Four treatments for croplands (control, soil bund, Fanya juu, and soil bund reinforced with grass) and three treatments for non-croplands (control, exclosure, and exclosure with trenches) were investigated during the rainy seasons. The results showed that runoff and SL varied greatly depending on agro-ecology, land use type, and SLM practice. Seasonal runoff ranged from 52 to 810 mm in 2015 and 37 to 898 mm in 2016, whereas SL ranged from 0.07 to 39.67 t ha-1 and 0.01 to 24.70 t ha-1. The highest rates were observed from untreated grazing land in the midland agro-ecology, largely because of heavy grazing and the occurrence of intense rain events. Runoff and SL were both significantly lower (P < 0.05) in SLM plots than in control plots. On average, seasonal runoff was reduced by 11% to 68%, and SL by 38% to 94% in SLM plots. Soil bund reinforced with grass in croplands and exclosure with trenches in non-croplands were found to be the most effective SLM practices for reducing both runoff and SL. Integrating structural and vegetative measures was therefore found to be the best way to control soil erosion and its consequences. Additional investigation is needed in consideration of ecological succession and other possible effects of these types of integrated measures, for example, the effects on soil properties, biomass, and biodiversity.

7.
Environ Manage ; 61(5): 860-874, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29442141

RESUMO

Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Solo/normas , Movimentos da Água , Conservação dos Recursos Hídricos/métodos , Secas , Etiópia , Hidrologia , Chuva , Clima Tropical
8.
Int J Hyg Environ Health ; 221(1): 64-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042198

RESUMO

This paper investigates the removal efficiency of organic matter, nitrogen, phosphorus, coliforms and pathogens from rural domestic wastewater in a two-stage vertical flow multi-soil-layering (MSL) system. The effects of wastewater quality, season and arid climate conditions on pollutants removal efficiency by the system were examined for one year. The experimental setup included two similar MSL systems composed of two layers: soil-mixture-layers (SML) and gravel permeable layers (PL) that are arranged in a brick like pattern. The applied hydraulic loading rate was 1000Lm-2day-1. Results showed that most of the physicochemical contaminants elimination occurred while the wastewater percolated through the first MSL stage. The second stage demonstrated an improvement in the reduction of all pollutants, especially fecal bacteria indicators and pathogens. The mean overall removal rates performed by the two-stage MSL system were 97% for TSS, 96% for BOD5, 91% for COD, 96% for TN and 95% for TP. For bacterial indicators, the combination of two-stage MSL system achieved high log removals between 2.21 and 3.15 log units. Contaminants reduction processes in MSL technology are more dependent on internal than external environmental factors. The effectiveness of the two-stage MSL system to treat domestic wastewater was strongly influenced by wastewater quality. Significant relationships between influent contaminants level and their removal efficiency were found. The efficiency of MSL technology to reduce contaminants is not sensitive to season and air temperature fluctuations. This is due to the capacity of MSL system materials to withstand the air temperature variation, which highlights one of the advantages of MSL's technology. Wastewater quality is the most important factor affecting the removal of contaminants in the MSL, which could be a critical parameter to considered when designing MSL system. Two-stage MSL system achieved a high treated wastewater quality amenable for treated wastewater reuse in agriculture recommended by Moroccan code of practice. Therefore, the combination of two-stage vertical flow MSL system could be considered an efficient and promising domestic wastewater treatment solution in arid countries to promote environmental protection and wastewater reuse.


Assuntos
Enterobacteriaceae/isolamento & purificação , Purificação da Água/métodos , População Rural , Microbiologia da Água , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...