Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108869, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318361

RESUMO

Trained immunity (TI) represents a memory-like process of innate immune cells. TI can be initiated with various compounds such as fungal ß-glucan or the tuberculosis vaccine, Bacillus Calmette-Guérin. Nevertheless, considering the clinical applications of harnessing TI against infections and cancer, there is a growing need for new, simple, and easy-to-use TI inducers. Here, we demonstrate that heat-killed Mycobacterium tuberculosis (HKMtb) induces TI both in vitro and in vivo. In human monocytes, this effect represents a truly trained process, as HKMtb confers boosted inflammatory responses against various heterologous challenges, such as lipopolysaccharide (Toll-like receptor [TLR] 4 ligand) and R848 (TLR7/8 ligand). Mechanistically, HKMtb-induced TI relies on epigenetic mechanisms in a Syk/HIF-1α-dependent manner. In vivo, HKMtb induced TI when administered both systemically and intranasally, with the latter generating a more robust TI response. Summarizing, our research has demonstrated that HKMtb has the potential to act as a mucosal immunotherapy that can successfully induce trained responses.

2.
Nat Commun ; 14(1): 6090, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794033

RESUMO

Intravesical administration of Bacillus Calmette-Guérin (BCG) was one of the first FDA-approved immunotherapies and remains a standard treatment for bladder cancer. Previous studies have demonstrated that intravenous (IV) administration of BCG is well-tolerated and effective in preventing tuberculosis infection in animals. Here, we examine IV BCG in several preclinical lung tumor models. Our findings demonstrate that BCG inoculation reduced tumor growth and prolonged mouse survival in models of lung melanoma metastasis and orthotopic lung adenocarcinoma. Moreover, IV BCG treatment was well-tolerated with no apparent signs of acute toxicity. Mechanistically, IV BCG induced tumor-specific CD8+ T cell responses, which were dependent on type 1 conventional dendritic cells, as well as NK cell-mediated immunity. Lastly, we also show that IV BCG has an additive effect on anti-PD-L1 checkpoint inhibitor treatment in mouse lung tumors that are otherwise resistant to anti-PD-L1 as monotherapy. Overall, our study demonstrates the potential of systemic IV BCG administration in the treatment of lung tumors, highlighting its ability to enhance immune responses and augment immune checkpoint blockade efficacy.


Assuntos
Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Camundongos , Animais , Vacina BCG , Neoplasias da Bexiga Urinária/patologia , Linfócitos T CD8-Positivos , Administração Intravenosa , Imunidade Celular , Células Matadoras Naturais , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico
3.
Front Immunol ; 14: 1136029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153580

RESUMO

Introduction: COVID-19 vaccines based on mRNA have represented a revolution in the biomedical research field. The initial two-dose vaccination schedule generates potent humoral and cellular responses, with a massive protective effect against severe COVID-19 and death. Months after this vaccination, levels of antibodies against SARS-CoV-2 waned, and this promoted the recommendation of a third vaccination dose. Methods: We have performed an integral and longitudinal study of the immunological responses triggered by the booster mRNA-1273 vaccination, in a cohort of health workers previously vaccinated with two doses of the BNT162b2 vaccine at University Hospital La Paz located in Madrid, Spain. Circulating humoral responses and SARS-CoV-2-specific cellular reactions, after ex vivo restimulation of both T and B cells (cytokines production, proliferation, class switching), have been analyzed. Importantly, all along these studies, the analyses have been performed comparing naïve and subjects recovered from COVID-19, addressing the influence of a previous infection by SARS-CoV-2. Furthermore, as the injection of the third vaccination dose was contemporary to the rise of the Omicron BA.1 variant of concern, T- and B-cell-mediated cellular responses have been comparatively analyzed in response to this variant. Results: All these analyses indicated that differential responses to vaccination due to a previous SARS-CoV-2 infection were balanced following the boost. The increase in circulating humoral responses due to this booster dropped after 6 months, whereas T-cell-mediated responses were more stable along the time. Finally, all the analyzed immunological features were dampened in response to the Omicron variant of concern, particularly late after the booster vaccination. Conclusion: This work represents a follow-up longitudinal study for almost 1.5 years, analyzing in an integral manner the immunological responses triggered by the prime-boost mRNA-based vaccination schedule against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Vacinas contra COVID-19 , Estudos Longitudinais , Vacinação
4.
Front Immunol ; 13: 812148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237264

RESUMO

The C-type lectin receptor Dectin-1 was originally described as the ß-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by ß-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the ß-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.


Assuntos
Lectinas Tipo C , beta-Glucanas , Lectinas Tipo C/metabolismo , Ligantes , Fagocitose , Transdução de Sinais
5.
Neuroscientist ; 28(3): 222-237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33446074

RESUMO

The brain is endowed with a unique cellular composition and organization, embedded within a vascular network and isolated from the circulating blood by a specialized frontier, the so-called blood-brain barrier (BBB), which is necessary for its proper function. Recent reports have shown that increments in the permeability of the blood vessels facilitates the entry of toxic components and immune cells to the brain parenchyma and alters the phenotype of the supporting astrocytes. All of these might contribute to the progression of different pathologies such as brain cancers or neurodegenerative diseases. Although it is well known that BBB breakdown occurs due to pericyte malfunctioning or to the lack of stability of the blood vessels, its participation in the diverse neural diseases needs further elucidation. This review summarizes what it is known about BBB structure and function and how its instability might trigger or promote neuronal degeneration and glioma progression, with a special focus on the role of pericytes as key modulators of the vasculature. Moreover, we will discuss some recent reports that highlights the participation of the BBB alterations in glioma growth. This pan-disease analysis might shed some light into these otherwise untreatable diseases and help to design better therapeutic approaches.


Assuntos
Doenças do Sistema Nervoso Central , Glioma , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Pericitos/fisiologia
6.
Cancers (Basel) ; 12(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147752

RESUMO

BACKGROUND: Gliomas remain refractory to all attempted treatments, including those using immune checkpoint inhibitors. The characterization of the tumor (immune) microenvironment has been recognized as an important challenge to explain this lack of response and to improve the therapy of glial tumors. METHODS: We designed a prospective analysis of the immune cells of gliomas by flow cytometry. Tumors with or without isocitrate dehydrogenase 1/2 (IDH1/2) mutations were included in the study. The genetic profile and the presence of different molecular and cellular features of the gliomas were analyzed in parallel. The findings were validated in syngeneic mouse models. RESULTS: We observed that few immune cells infiltrate mutant IDH1/2 gliomas whereas the immune content of IDH1/2 wild-type tumors was more heterogeneous. Some of them contained an important immune infiltrate, particularly enriched in myeloid cells with immunosuppressive features, but others were more similar to mutant IDH1/2 gliomas, with few immune cells and a less immunosuppressive profile. Notably, we observed a direct correlation between the percentage of leukocytes and the presence of vascular alterations, which were associated with a reduced expression of Tau, a microtubule-binding protein that controls the formation of tumor vessels in gliomas. Furthermore, overexpression of Tau was able to reduce the immune content in orthotopic allografts of GL261 cells, delaying tumor growth. CONCLUSIONS: We have confirmed the reduced infiltration of immune cells in IDH1/2 mutant gliomas. By contrast, in IDH1/2 wild-type gliomas, we have found a direct correlation between the presence of vascular alterations and the entrance of leukocytes into the tumors. Interestingly, high levels of Tau inversely correlated with the vascular and the immune content of gliomas. Altogether, our results could be exploited for the design of more successful clinical trials with immunomodulatory molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...