Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38255581

RESUMO

Residual stresses pose significant challenges in the powder bed fusion of metals using a laser (PBF-LB/M), impacting both the dimensional accuracy and mechanical properties. This study quantitatively analyzes deformation and residual stresses in additively manufactured Inconel 625. Investigating both as-built and stress-relieved states with varied scanning strategies (90°, 67°, strip, and 90° chessboard) in PBF-LB/M/IN625, distortion is evaluated using the bridge curvature method. Quantitative measurements are obtained through 3D laser surface scanning on pairs of bridge specimens-one measured before and after detachment from the build plate, and the other undergoing stress-relieving heat treatment at 870 °C for 1 h. The findings reveal that, among as-built specimens, the 90° and 90° strip strategies induce the least distortion, followed by the 67° and chessboard 90° strategies. Furthermore, stress-relief treatment significantly reduces residual stress levels. After post-treatment, the deformation in X-axis samples with 90° and 90° strip strategies decreases by 39% and 42%. In contrast, the samples with the 67° and 90° checkerboard strategies exhibit more pronounced reductions of 44% and 63%, respectively. These quantitative results contribute useful insights for optimizing PBF-LB/M/IN625 processes in additive manufacturing.

2.
Materials (Basel) ; 16(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37512205

RESUMO

The study aimed to evaluate the tensile strength of additively manufactured (AMed) IN 625 using sub-sized test pieces and compare them to standard specimens. Cylindrical round coupons of varying diameters were manufactured along the Z-axis using the laser powder bed fusion technique and subjected to heat treatment. The simulation of the alloy solidification predicted the formation of several intermetallics and carbides under equilibrium conditions (slow cooling), apart from the γ phase (FCC). Sub-sized tensile specimens with different gauge diameters were machined from the coupons and tensile tested at ambient temperature. The results showed that sub-sized specimens exhibited lower tensile and yield strengths compared to standard specimens, but still higher than the minimum requirements of the relevant ASTM standard for AMed IN 625. The lower strength was attributed to the "size effect" of the test specimens. Fracture surfaces of the sub-sized test specimens exhibit a mixed character, combining cleavage and microvoid coalescence, with improved ductility compared to standard test pieces. The study highlights the importance of adapting characterization methods to the particularities of manufactured parts, including reduced thicknesses that make sampling standard-size specimens impractical. It concludes that sub-sized specimens are valuable for quality control and verifying compliance with requirements of AMed IN 625 tensile properties.

3.
Materials (Basel) ; 15(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36013913

RESUMO

This paper presents an experimental study on the influence of the main Laser Powder Bed Fusion (PBF-LB) process parameters on the density and surface quality of the IN 625 superalloy manufactured using the Lasertec 30 SLM machine. Parameters' influence was investigated within a workspace defined by the laser power (150-400 W), scanning speed (500-900 m/s), scanning strategy (90° and 67°), layer thickness (30-70 µm), and hatch distance (0.09-0.12 µm). Experimental results showed that laser power and scanning speed play a determining role in producing a relative density higher than 99.5% of the material's theoretical density. A basic set of process parameters was selected for generating high-density material: laser power 250 W, laser speed 750 mm/s, layer thickness 40 µm, and hatch distance 0.11 mm. The 67° scanning strategy ensures higher roughness surfaces than the 90° scanning strategy, roughness that increases as the laser power increases and the laser speed decreases.

4.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591531

RESUMO

The main drawbacks of the Laser Powder Bed Fusion (LPBF) process are the surface quality and dimensional accuracy of manufactured parts due to the edge and corner effects. These effects can be diminished by using an appropriate balance of the process parameters and scanning strategies. This paper focuses on the assessment of reducing the edge and corner effects that occur in additively manufactured IN 625 alloy via the LPBF technique by varying the hatch angle rotation (by 45°, 67°, and 90°) and volumetric energy density (VED), and using the laser top surface remelting technique (LSR). The edge and corner effects of the cubic samples were quantitatively evaluated on the top surface by 3D laser surface scanning. It was found that the edge and corner effects became more pronounced in the cases of samples built with no contour and hatch angles of 45° and 67°, while the smallest deformations were obtained when the hatch angle was rotated by 90°. Moreover, the heights of both the edge and corner ridges increase as the number of remeltings passing the top layer increases. Conversely, when a lower VED was used for melting the top layer(s) of the samples, the edge and corner ridges were slightly reduced.

5.
Materials (Basel) ; 14(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206225

RESUMO

Laser defocusing was investigated to assess the influence on the surface quality, melt pool shape, tensile properties, and densification of selective laser melted (SLMed) IN 625. Negative (-0.5 mm, -0.3 mm), positive (+0.3 mm, +0.5 mm), and 0 mm defocusing distances were used to produce specimens, while the other process parameters remained unchanged. The scanning electron microscopy (SEM) images of the melt pools generated by different defocusing amounts were used to assess the influence on the morphology and melt pool size. The mechanical properties were evaluated by tensile testing, and the bulk density of the parts was measured by Archimedes' method. It was observed that the melt pool morphology and melting mode are directly related to the defocusing distances. The melting height increases while the melting depth decreases from positive to negative defocusing. The use of negative defocusing distances generates the conduction melting mode of the SLMed IN 625, and the alloy (as-built) has the maximum density and ultimate tensile strength. Conversely, the use of positive distances generates keyhole mode melting accompanied by a decrease of density and mechanical strength due to the increase in porosity and is therefore not suitable for the SLM process.

6.
Materials (Basel) ; 13(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138294

RESUMO

The notch sensitivity of additively manufactured IN 625 superalloy produces by laser powder bed fusion (LPBF) has been investigated by tensile testing of cylindrical test pieces. Smooth and V-notched test pieces with four different radii were tested both in as-built state and after a stress relief heat treatment for 1 h at 900 °C. Regardless of the notch root radius, the investigated alloy exhibits notch strength ratios higher than unity in both as-built and in stress-relieved states, showing that the additive manufactured IN 625 alloy is not prone to brittleness induced by the presence of V-notches. Higher values of notch strength ratios were recorded for the as-built material as a result of the higher internal stress level induced by the manufacturing process. Due to the higher triaxiality of stresses induced by notches, for both as-built and stress-relieved states, the proof strength of the notched test pieces is even higher than the tensile strength of the smooth test pieces tested in the same conditions. SEM fractographic analysis revealed a mixed mode of ductile and brittle fracture morphology of the V-notched specimens regardless the notch root radius. A more dominant ductile mode of fracture was encountered for stress-relieved test pieces than in the case of the as-built state. However, future research is needed to better understand the influence of notches on additive manufactured IN 625 alloy behaviour under more complex stresses.

7.
Materials (Basel) ; 13(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126747

RESUMO

The present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material's room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigations. Tensile specimens were manufactured using four building orientations (along Z, X, Y-axis, and tilted at 45° in the XZ plane) and three different scanning strategies (90°, 67°, and 45°). The simulation of microstructure development in specimens built along the Z-axis, applying all three scanning strategies, showed that the as-built microstructure is strongly textured and is influenced by the scanning strategy. The 45° scanning strategy induced the highest microstructural texture from all scanning strategies used. The monotonic tensile test results highlighted that the material exhibits significant anisotropic properties, depending on both the specimen orientation and the scanning strategy. Regardless of the scanning strategy used, the lowest mechanical performances of IN 625, in terms of strength values, were recorded for specimens built in the vertical position, as compared with all the other orientations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...