Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955346

RESUMO

Naturally occurring sono- and photoactive minerals, which are abundant on Earth, represent an attractive alternative to the synthesized sonophotocatalysts as cost-effective materials for water and wastewater treatment. This study focuses on characterizing and evaluating the sonophotocatalytic activity of natural sphalerite (NatS) from Dovatka deposit (Siberia) under high-frequency ultrasonic (US, 1.7 MHz) and ultraviolet light-emitting diodes (UVA LED, 365 nm) irradiation towards degradation of 4-chlorophenol as a model organic pollutant. Since raw natural sphalerite did not exhibit a measurable photocatalytic activity, it was calcined at 500, 900 and 1200 °C. The natural sphalerite after calcination at 900 °C (NatS*) was found to be the most effective for sonophotocatalytic degradation of 4-chlorophenol, attaining the highest efficiency (55%, 1 h exposure) in the following row: UV < US ≈ UV/US ≈ US/NatS* < UV/NatS* < UV/US/NatS*. Addition of 1 mM H2O2 increased the removal to 74% by UV/US/NatS*/H2O2 process. An additive effect between UV/NatS* and US/NatS* processes was observed in the sonophotocatalytic system as well as in the H2O2-assisted system. We assume that the sonophotocatalytic hybrid process, which is based on the simultaneous use of high-frequency ultrasound, UVA light, calcined natural sphalerite and H2O2, could provide a basis of an environmentally safe and cost-effective method of elimination of organic pollutants from aqueous media.

2.
Sci Total Environ ; 806(Pt 3): 151233, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715208

RESUMO

Development of the narrow-band mercury-free light sources, such as light emitting diodes (LEDs) and excilamps, has stimulated research on inactivation of pathogenic microorganisms by dual-wavelength light radiation. To date, dual-wavelength light radiation has emerged as an advanced tool for enhancing microbial inactivation in water in view of potential synergistic effect. This is the first review that aims at elucidating its mechanisms under dual-wavelength light exposure and surveying a body of related literature in terms of yes-or-no synergy. We have proposed three key inactivation mechanisms, which function in the estimated spectrum ranges I (190-254 nm), II (250-320 nm) and III (300-405 nm) and provide a synergistic effect when combined. These mechanisms involve proteins damage and DNA repair suppression (I), direct and indirect DNA damage (II) and generation of reactive oxygen species (ROS) by endogenous photosensitizers (III), such as porphyrins and flavins. A synergy under dual-wavelength light irradiation simultaneously or sequentially occurs if coupling two wavelengths of different ranges (I + II, I + III, II + III) in order to trigger different inactivation mechanisms. Recent advances of dual-wavelength light strategy in photodynamic therapy could be applied for water disinfection. They bring opportunities for applying the sources of near-UV and visible radiation and making the disinfection processes more energy- and cost-effective. From this standpoint, the synergistically efficient dual-wavelength combinations II + III and the combinations within the extended to 700 nm range III (near-UV + VIS) appear to be promising for developing novel advanced oxidation processes for disinfection of real turbid waters.


Assuntos
Desinfecção , Purificação da Água , Luz , Raios Ultravioleta , Água , Microbiologia da Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-33525552

RESUMO

Bisphenol A (BPA), a precursor to important plastics, is regarded as a common aquatic micropollutant with endocrine-disrupting activity. In the present study, we explored the capability of a UV KrCl excilamp (222 nm) to degrade BPA by a photo-Fenton-like process using persulfate under flow-through conditions. The first-order rate constants of degradation were obtained and the mineralization of dissolved organic carbon (DOC) was estimated. The results showed complete BPA degradation and high DOC mineralization (70-97%). A comparative analysis of degradation rates and DOC removal in the examined systems (UV, Fe2+/S2O82-, UV/S2O82- and UV/Fe2+/S2O82-) revealed a significant synergistic effect in the photo-Fenton-like system (UV/Fe2+/S2O82-) without the accumulation of toxic intermediates. This indicated that the BPA was oxidized via the conjugated radical chain mechanism, which was based on the photo-induced and catalytic processes involving HO• and SO4-• radicals. The primary intermediates of BPA degradation in the UV/Fe2+/S2O82- system were identified by HPLC/MS and the oxidation pathway was proposed. The high performance of the photo-Fenton-like process employing a quasi-monochromatic UV radiation of a KrCl excilamp offers promising potential for an efficient removal of such micropollutants from aqueous media.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Compostos Benzidrílicos , Peróxido de Hidrogênio , Oxirredução , Fenóis
4.
Water Res ; 182: 116016, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619682

RESUMO

Since the early 2000s, dual-frequency ultrasound (DFUS) has received much attention for synergistically enhanced elimination of organic pollutants and pathogenic microorganisms from water. In the present review, we have surveyed recent developments in acoustic physics to elucidate the mechanism of synergistic effect under exposure of aqueous media to DFUS. Briefly, the nonlinear dynamics of microbubbles upon DFUS exposure produces additional frequencies, such as harmonics, subharmonics, ultraharmonics and combination frequencies. These increase the probability of bubbles collapse, thereby enhancing cavitation and generating more reactive oxygen species (ROS) for advanced oxidation processes (AOPs). Further, literature data on ROS generation, chemical degradation and microbial inactivation in aqueous media through DFUS alone and DFUS-based AOPs (involving oxidants or catalysts) have been discussed. In this regard, optimal frequency combination, sonoreactor type and transducer arrangement appear to be key parameters for achieving a high synergistic effect. Strengths and shortcomings of DFUS to water treatment and disinfection have been identified and future research directions have been proposed. Though most studies were conducted on pure (matrix-free) aqueous solutions, these AOPs could be applicable for treating real waters.


Assuntos
Poluentes Químicos da Água/análise , Purificação da Água , Desinfecção , Oxidantes , Oxirredução
5.
Water Res ; 166: 115085, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539667

RESUMO

Ultraviolet and ultrasound-based advanced oxidation processes (AOPs) are gaining considerable research attention for water treatment and disinfection. Compared to low-frequency ultrasound (LFUS, <100 kHz), high-frequency ultrasound (HFUS, >100 kHz and MHz range) for water disinfection remains much less investigated. The present review aims at surveying and discussing literature data on microbial inactivation in non-food aqueous media using HFUS alone and with AOPs. More specifically, the review covers sonophotolytic (US/UV) processes under sequential and simultaneous modes as well as sonophotochemical processes, where both low and high frequencies were applied. Addressing a state-of-the-art biomedical research, we have attempted to provide more insight into mechanical and sonochemical mechanisms of inactivation under ultrasonic exposure. Sonoporation, intracellular generation of reactive oxygen species (ROS), energy stimulation of aquaporins to deliver ROS, and injection of extracellular ROS into sonoporated cells have all been identified as primary ways of inactivation. Application of ultrasound in the 0.2-2 MHz range and mercury-free light sources to support the Minamata Convention on Mercury is an ongoing challenge for effective elimination of microbial pathogens from water and wastewater through sonophotolytic and sonophotochemical AOPs.


Assuntos
Raios Ultravioleta , Purificação da Água , Desinfecção , Viabilidade Microbiana , Águas Residuárias
6.
Ecotoxicol Environ Saf ; 169: 169-177, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30447517

RESUMO

This study is the first to reveal that the iron-catalyzed photo-activation of persulfate (UV/PS/Fe2+system) under mercury-free KrCl excilamp irradiation (222 nm) is capable of simultaneous degradation of an organic pollutant and inactivation of a microorganism in aqueous media using the herbicide atrazine (ATZ) and E. coli as model contaminants, respectively. Deionized water, natural water and wastewater effluents, contaminated with 4 mg/L ATZ and/or 105 CFU/mL E. coli, were sequentially treated by direct UV, UV/PS and UV/PS/Fe2+ processes. Lowering the pH to 3.5 accelerated both the degradation and inactivation during the UV/PS/Fe2+ treatment of natural water. Comparison of the apparent UV dose-based pseudo first-order rate constants showed the negative effect of E. coli on ATZ degradation by decreasing rates in all of the examined water matrices. This can be due to the competitive effect between ATZ and bacterial cells for reactive oxygen species (ROS). By contrast, E. coli in the presence of ATZ was inactivated faster in natural water and wastewater (but not in deionized water), as compared to the case without ATZ. A scheme of possible synergistic inactivation under ROS exposure in water, containing ATZ, natural organic matter and chloride ions as primary constituents, was proposed. Radical scavenging experiments showed a major contribution of SO4•- to ATZ degradation by UV/PS/Fe2+ treatment of deionized water and natural water. The UV doses, required for 90% removal of ATZ from natural water and wastewater, achieve 160 mJ/cm2 (pH 5.5) and concurrently provide 99.99% E. coli inactivation. These results make the UV/PS/Fe2+ system with narrow band UV light sources promising for simultaneous water treatment and disinfection.


Assuntos
Atrazina/análise , Desinfecção/métodos , Escherichia coli/efeitos dos fármacos , Compostos Ferrosos/química , Compostos de Potássio/química , Sulfatos/química , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Atrazina/efeitos da radiação , Desinfecção/instrumentação , Escherichia coli/efeitos da radiação , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/instrumentação
7.
Water Res ; 132: 177-189, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331640

RESUMO

Over the last decade, ultraviolet light-emitting diodes (UV LEDs) have attracted considerable attention as alternative mercury-free UV sources for water treatment purposes. This review is a comprehensive analysis of data reported in recent years (mostly, post 2014) on the application of UV LED-induced advanced oxidation processes (AOPs) to degrade organic pollutants, primarily dyes, phenols, pharmaceuticals, insecticides, estrogens and cyanotoxins, in aqueous media. Heterogeneous TiO2-based photocatalysis in lab grade water using UVA LEDs is the most frequently applied method for treating organic contaminants. The effects of controlled periodic illumination, different TiO2-based nanostructures and reactor types on degradation kinetics and mineralization are discussed. UVB and UVC LEDs have been used for photo-Fenton, photo-Fenton-like and UV/H2O2 treatment of pollutants, primarily, in model aqueous solutions. Notably, UV LED-activated persulfate/peroxymonosulfate processes were capable of providing degradation in DOC-containing waters. Wall-plug efficiency, energy-efficiency of UV LEDs and the energy requirements in terms of Electrical Energy per Order (EEO) are discussed and compared. Despite the overall high degradation efficiency of the UV LED-based AOPs, practical implementation is still limited and at lab scale. More research on real water matrices at more environmentally relevant concentrations, as well as an estimation of energy requirements providing fluence-based kinetic data are required.


Assuntos
Peróxido de Hidrogênio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos , Oxirredução , Titânio/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-28448750

RESUMO

This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe2+) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (105 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (QUV(A+B), kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a QUV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.


Assuntos
Atrazina/análise , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Ferro/química , Compostos de Potássio/química , Sulfatos/química , Luz Solar , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Atrazina/efeitos da radiação , Desinfecção/métodos , Escherichia coli/efeitos da radiação , Estudos de Viabilidade , Concentração de Íons de Hidrogênio , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/efeitos da radiação
9.
Artigo em Inglês | MEDLINE | ID: mdl-23947705

RESUMO

The impact of suspended TiO2 particles on the efficiency of UV inactivation of E. coli by XeBr excilamp (282 nm) was assessed using direct and integrating sphere spectroscopy for absorbance measurements in the calculations of UV doses. Complete disinfection (no quantifiable E. coli colonies) was observed at 30 (0.25 g/L of TiO2) and 40 mJ/cm(2) (0.1 g/L of TiO2), whereas UV alone and the treatment in the presence of 0.5 g/L of TiO2 produced tailing in the dose-response curves. The optimum concentration of TiO2 was found to be 0.25 g/L, which correlates with the highest •OH exposure (CT value) and steady state concentration of •OH. This study demonstrates the importance of proper calculation of UV dose and inclusion of •OH exposure effects when reporting results from disinfection studies using technologies with multiple modes of inactivation such as with UV/TiO2.


Assuntos
Desinfecção/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Titânio/química , Raios Ultravioleta , Bromo/química , Escherichia coli/fisiologia , Lasers de Excimer , Xenônio/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-22871005

RESUMO

The efficiency of UV/H(2)O(2) treatment using KrCl (222 nm) and XeBr (282 nm) excilamps was examined for removal of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) from aqueous solution in the molecular form (pH 2 and un-adjusted pH) and anionic form (at pH 11). UV/H(2)O(2) treatment of 2- or 4-CP was initially carried out at un-adjusted pH with varying molar ratios of chlorophenol and H(2)O(2). The para-chlorobenzoic acid was used as a hydroxyl radical (•OH) probe compound. UV/H(2)O(2) treatment of 2- and 4-CP with a molar ratio of 1:25 at ambient pH and a fluence of 4.1 J/cm(2) provided a significant decrease in chemical oxygen demand (COD). Under these conditions, the •OH exposure was found to increase from 0.5 × 10(-11) and 0.4 × 10(-11) to 1.8 × 10(-11) and 1.3 × 10(-11) M min for KrCl and XeBr excilamp, respectively. Compared with direct UV photolysis, the pseudo-first-order fluence-based rate constants of 2- and 4-CP degradation in UV/H(2)O(2) process at a molar ratio of 1:25 were significantly higher for molecular 2-CP and 4-CP in the anionic form using both excilamps. Detailed information on UV fluence and/or the exposure to •OH radicals is proposed to accurately compare studies reporting the effectiveness of AOPs based on excilamps.


Assuntos
Clorofenóis/química , Peróxido de Hidrogênio/química , Raios Ultravioleta , Radical Hidroxila/química , Poluentes Químicos da Água/química
11.
Chemosphere ; 89(6): 637-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22784863

RESUMO

Excilamps as modern mercury-free sources of narrow-band UV radiation represent an attractive alternative in environmental applications. This review focuses on recent studies on the water and surface decontamination with excilamps by means of direct photolysis and advanced oxidation processes. To date, direct photolysis and advanced oxidation processes (AOPs) such as UV/H(2)O(2), UV/Fenton and UV/O(3) have been applied for degradation of organic compounds (mainly, phenols, dyes and herbicides) in model aqueous solutions. Special emphasis is placed on studies combining UV irradiation (as a pre-treatment or post-treatment step) with biological treatment. In this review, the efficiencies of direct UV, UV/H(2)O(2) and UV/TiO(2) processes for inactivation of a variety of pathogenic microorganisms in water and on surfaces are discussed. The analysis of the literature shows that more works need to be done on scaling up the processes, degradation/mineralization of target pollutant(s) in real effluents and evaluation of energy requirements.


Assuntos
Bactérias/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/química , Animais , Biodegradação Ambiental , Corantes/química , Herbicidas/química , Peróxido de Hidrogênio/química , Fenóis/química , Fotólise
12.
Chemosphere ; 70(6): 1124-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17928030

RESUMO

2-Chlorophenol (2-CP), 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) at initial concentrations of 10, 20, 50 and 100mg l(-1) were degraded in aqueous media by direct UV photolysis using dielectric barrier discharge XeBr( *) excilamp (283nm) in a flow-through photoreactor. The pseudo-first order rate constants were highest and half-life times were lowest for 4-CP. The rates of photolysis under the experimental conditions increased in the order: 2-CP<2,4-DCP<4-CP. The intermediates of photolysis were identified by GC-MS and HPLC. The evolution of hydroquinone and p-benzoquinone as major intermediates of 4-CP photolysis was monitored.


Assuntos
Clorofenóis/química , Fotólise/efeitos da radiação , Raios Ultravioleta , Benzoquinonas/química , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Hidroquinonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...