Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15769-15778, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829376

RESUMO

A polarized light source covering a wide wavelength range is required in applications across diverse fields, including optical communication, photonics, spectroscopy, and imaging. For practical applications, high degrees of polarization and thermal performance are needed to ensure the stability of the radiation intensity and low energy consumption. Here, we achieved efficient emission of highly polarized and broadband thermal radiation from a suspended aligned carbon nanotube film. The anisotropic nature of the film, combined with the suspension, led to a high degree of linear polarization (∼0.9) and great thermal performance. Furthermore, we performed time-resolved measurements of thermal emission from the film, revealing a fast time response of approximately a few microseconds. We also obtained visible light emission from the device and analyzed the film's mechanical breakdown behavior to improve the emission intensity. Finally, we demonstrated that suspended devices with a constriction geometry can enhance the heating performance. These results show that carbon nanotube film-based devices, as electrically driven thermal emitters of polarized radiation, can play an important role for future development in optoelectronics and spectroscopy.

2.
Nano Lett ; 23(21): 9817-9824, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37882802

RESUMO

Spectroscopic analysis with polarized light has been widely used to investigate molecular structure and material behavior. A broadband polarized light source that can be switched on and off at a high speed is indispensable for reading faint signals, but such a source has not been developed. Here, using aligned carbon nanotube (CNT) films, we have developed broadband thermal emitters of polarized infrared radiation with switching speeds of ≲20 MHz. We found that the switching speed depends on whether the electrical current is parallel or perpendicular to the CNT alignment direction with a significantly higher speed achieved in the parallel case. Together with detailed theoretical simulations, our experimental results demonstrate that the contact thermal conductance to the substrate and the conductance to the electrodes are important factors that determine the switching speed. These emitters can lead to advanced spectroscopic analysis techniques with polarized radiation.

3.
Nano Lett ; 22(8): 3236-3244, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35435683

RESUMO

IR analyses such as Fourier transform infrared spectroscopy (FTIR) are widely used in many fields; however, the performance of FTIR is limited by the slow speed (∼10 Hz), large footprint (∼ millimeter), and glass bulb structure of IR light sources. Herein, we present IR spectroscopy and imaging based on multilayer-graphene microemitters, which have distinct features: a planar structure, bright intensity, a small footprint (sub-µm2), and high modulation speed of >50 kHz. We developed an IR analysis system based on the multilayer-graphene microemitter and performed IR absorption spectroscopy. We show two-dimensional IR chemical imaging that visualizes the distribution of the chemical information. In addition, we present high-spatial-resolution IR imaging with a spatial resolution of ∼1 µm, far higher than the diffraction limit. The graphene-based IR spectroscopy and imaging can open new routes for IR applications in chemistry, material science, medicine, biology, electronics, and physics.


Assuntos
Grafite , Diagnóstico por Imagem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
ACS Nano ; 16(2): 2690-2698, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156795

RESUMO

Graphene is a promising material for producing optical devices because of its optical, electronic, thermal, and mechanical properties. Here, we demonstrated on-chip optical switches equipped with a graphene heater, which exhibited high modulation speed and efficiency. We designed the optimal structure of the optical switch with an add/drop-type racetrack resonator and two output waveguides (the through and drop ports) by the electromagnetic field calculation. We fabricated the optical switch in which the graphene microheater was directly placed on the resonator and directly observed its operation utilizing a near-infrared camera. As observed from the transmission spectra, this device exhibited high wavelength tuning efficiency of 0.24 nm/mW and high heating efficiency of 7.66 K·µm3/mW. Further, we measured the real-time high-speed operation at 100 kHz and verified that the graphene-based optical switch achieved high-speed modulation with 10%-90% rise and fall response times, 1.2 and 3.6 µs, respectively, thus confirming that they are significantly faster than typical optical switches that are based on racetrack resonators and metal heaters with response times of ∼100 µs. These graphene-based optical switches on silicon chips with high efficiency and speed are expected to enable high-performance silicon photonics and integrated optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...