Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0250431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956845

RESUMO

OBJECTIVE: Pilot testing of real time functional magnetic resonance imaging (rt-fMRI) and real time functional near infrared spectroscopy (rt-fNIRS) as brain computer interface (BCI) neural feedback systems combined with motor learning for motor recovery in chronic severely impaired stroke survivors. APPROACH: We enrolled a four-case series and administered three sequential rt-fMRI and ten rt-fNIRS neural feedback sessions interleaved with motor learning sessions. Measures were: Arm Motor Assessment Tool, functional domain (AMAT-F; 13 complex functional tasks), Fugl-Meyer arm coordination scale (FM); active wrist extension range of motion (ROM); volume of activation (fMRI); and fNIRS HbO concentration. Performance during neural feedback was assessed, in part, using percent successful brain modulations during rt-fNIRS. MAIN RESULTS: Pre-/post-treatment mean clinically significant improvement in AMAT-F (.49 ± 0.22) and FM (10.0 ± 3.3); active wrist ROM improvement ranged from 20° to 50°. Baseline to follow-up change in brain signal was as follows: fMRI volume of activation was reduced in almost all ROIs for three subjects, and for one subject there was an increase or no change; fNIRS HbO was within normal range, except for one subject who increased beyond normal at post-treatment. During rt-fNIRS neural feedback training, there was successful brain signal modulation (42%-78%). SIGNIFICANCE: Severely impaired stroke survivors successfully engaged in spatially focused BCI systems, rt-fMRI and rt-fNIRS, to clinically significantly improve motor function. At the least, equivalency in motor recovery was demonstrated with prior long-duration motor learning studies (without neural feedback), indicating that no loss of motor improvement resulted from substituting neural feedback sessions for motor learning sessions. Given that the current neural feedback protocol did not prevent the motor improvements observed in other long duration studies, even in the presence of fewer sessions of motor learning in the current work, the results support further study of neural feedback and its potential for recovery of motor function in stroke survivors. In future work, expanding the sophistication of either or both rt-fMRI and rt-fNIRS could hold the potential for further reducing the number of hours of training needed and/or the degree of recovery. ClinicalTrials.gov ID: NCT02856035.


Assuntos
Interfaces Cérebro-Computador , Imageamento por Ressonância Magnética , Reabilitação do Acidente Vascular Cerebral/métodos , Punho/diagnóstico por imagem , Punho/fisiologia , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Amplitude de Movimento Articular , Fatores de Tempo
2.
J Neurosci Methods ; 341: 108719, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32439425

RESUMO

BACKGROUND: After stroke, wrist extension dyscoordination precludes functional arm/hand. We developed a more spatially precise brain signal for use in brain computer interface (BCI's) for stroke survivors. NEW METHOD: Combination BCI protocol of real-time functional magnetic resonance imaging (rt-fMRI) sequentially followed by functional near infrared spectroscopy (rt-fNIRS) neurofeedback, interleaved with motor learning sessions without neural feedback. Custom Matlab and Python code was developed to provide rt-fNIRS-based feedback to the chronic stroke survivor, system user. RESULTS: The user achieved a maximum of 71 % brain signal accuracy during rt-fNIRS neural training; progressive focus of brain activation across rt-fMRI neural training; increasing trend of brain signal amplitude during wrist extension across rt-fNIRS training; and clinically significant recovery of arm coordination and active wrist extension. COMPARISON WITH EXISTING METHODS: Neurorehabilitation, peripherally directed, shows limited efficacy, as do EEG-based BCIs, for motor recovery of moderate/severely impaired stroke survivors. EEG-based BCIs are based on electrophysiological signal; whereas, rt-fMRI and rt-fNIRS are based on neurovascular signal. CONCLUSION: The system functioned well during user testing. Methods are detailed for others' use. The system user successfully engaged rt-fMRI and rt-fNIRS neurofeedback systems, modulated brain signal during rt-fMRI and rt-fNIRS training, according to volume of brain activation and intensity of signal, respectively, and clinically significantly improved limb coordination and active wrist extension. fNIRS use in this case demonstrates a feasible/practical BCI system for further study with regard to use in chronic stroke rehab, and fMRI worked in concept, but cost and some patient-use issues make it less feasible for clinical practice.


Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Acidente Vascular Cerebral , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...