Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118393, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38801913

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Casearia sylvestris var. lingua (Cambess.) Eichler, a member of the Salicaceae family, holds a prominent place in traditional medicine across various cultures due to its versatile therapeutic properties. Historically, indigenous communities have utilized different parts of the plant, including leaves, bark, and roots, to address a wide array of health conditions. Traditional uses of C. sylvestris var. lingua encompasses the treatment of gastrointestinal disorders, respiratory infections, wound healing, inflammation, and stomach ulcers. Pharmacological studies have demonstrated the plant's antimicrobial, anti-inflammatory, antioxidant, analgesic, gastroprotective, and immunomodulatory effects. This signifies the first scientific validation report for C. sylvestris var. lingua regarding its effectiveness against ulcerative colitis. The report aims to affirm the traditional use of this plant through pre-clinical experiments. AIM OF THE RESEARCH: This work uses an aqueous extract from C. sylvestris var. lingua leaves (AECs) to evaluate the acute anti-ulcerative colitis efficacy in rat and HT-29 (human colorectal cancer cell line) models. METHODS: To determine the secondary metabolites of AECs, liquid chromatography with a diode array detector (LC-DAD) study was carried out. 2,4,6-trinitrobenzenesulfonic acid (TNBS, 30 mg/0.25 mL EtOH 30% v/v) was used as an enema to cause acute colitis. Three days were spent giving the C. sylvestris var. lingua extract orally by gavage at dosages of 3, 30, and 300 mg/kg. The same route was used to deliver distilled water to the vehicle and naïve groups. After the animals were sacrificed on the fourth day, intestinal tissues were taken for histological examination and evaluation of biochemical tests such as those measuring superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), nitrite/nitrate, myeloperoxidase (MPO) activity. Additionally, interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and interleukin 10 (IL-10), were conducted on the intestinal tissues. Additionally, an MTT assay was used to evaluate the effect of AECs on the viability of HT-29 cells. Additionally, a molecular docking study was carried out to compare some potential target proteins with identified chemicals found in AECs. RESULTS: LC-DAD analysis identified five compounds (caffeic acid, ellagic acid, ferulic acid, gallic acid, and quercetin) in AECs. Pre-administration of AECs (3; 30; 300 mg/kg) and mesalazine (500 mg/kg) reduced macroscopic scores (55%, 47%, 45%, and 52%, p < 0.001) and ulcerated areas (70.3%, 70.5%, 57%, and 56%, p < 0.001), respectively. It also increased SOD, GSH, and CAT activities (p < 0.01), while decreasing MDA (p < 0.001), nitrite/nitrate (p < 0.05), and MPO (p < 0.001) activities compared to the colitis group. Concerning inflammatory markers, significant modulations were observed: AECs (3, 30, and 300 mg/kg) lowered levels of IL-1ß and TNF-α (p < 0.001) and increased IL-10 levels (p < 0.001) compared to the colitis groups. The viability of HT-29 cells was suppressed by AECs with an IC50 of 195.90 ± 0.01 µg/mL (48 h). During the molecular docking analysis, quercetin, gallic acid, ferulic acid, caffeic acid, and ellagic acid demonstrated consistent binding affinities, forming stable interactions with the 3w3l (TLR8) and the 3ds6 (MAPK14) complexes. CONCLUSION: These results imply that the intestinal mucogenic, anti-inflammatory, and antioxidant properties of the C. sylvestris var. lingua leaf extract may be involved in its therapeutic actions for ulcerative colitis. The results of the in silico study point to the possibility of quercetin and ellagic acid interacting with P38 and TLR8, respectively, in a beneficial way.


Assuntos
Anti-Inflamatórios , Antioxidantes , Casearia , Extratos Vegetais , Folhas de Planta , Ácido Trinitrobenzenossulfônico , Animais , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Humanos , Masculino , Células HT29 , Ratos , Casearia/química , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Modelos Animais de Doenças , Ratos Wistar , Colite/tratamento farmacológico , Colite/induzido quimicamente , Ratos Sprague-Dawley
2.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421266

RESUMO

Molecular profiling techniques such as metagenomics, metatranscriptomics or metabolomics offer important insights into the functional diversity of the microbiome. In contrast, 16S rRNA gene sequencing, a widespread and cost-effective technique to measure microbial diversity, only allows for indirect estimation of microbial function. To mitigate this, tools such as PICRUSt2, Tax4Fun2, PanFP and MetGEM infer functional profiles from 16S rRNA gene sequencing data using different algorithms. Prior studies have cast doubts on the quality of these predictions, motivating us to systematically evaluate these tools using matched 16S rRNA gene sequencing, metagenomic datasets, and simulated data. Our contribution is threefold: (i) using simulated data, we investigate if technical biases could explain the discordance between inferred and expected results; (ii) considering human cohorts for type two diabetes, colorectal cancer and obesity, we test if health-related differential abundance measures of functional categories are concordant between 16S rRNA gene-inferred and metagenome-derived profiles and; (iii) since 16S rRNA gene copy number is an important confounder in functional profiles inference, we investigate if a customised copy number normalisation with the rrnDB database could improve the results. Our results show that 16S rRNA gene-based functional inference tools generally do not have the necessary sensitivity to delineate health-related functional changes in the microbiome and should thus be used with care. Furthermore, we outline important differences in the individual tools tested and offer recommendations for tool selection.


Assuntos
Metagenoma , Microbiota , Humanos , RNA Ribossômico 16S/genética , Genes de RNAr , Microbiota/genética , Algoritmos
3.
Front Cardiovasc Med ; 9: 927652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247458

RESUMO

Study design: The diversity of microflora inhabiting endplate (EP) and nucleus pulposus (NP) tissues of human intervertebral disc (IVD) was profiled through NGS-supported 16S rRNA amplicon sequencing. Sixteen EP and their corresponding NP were excised from the brain-dead voluntary organ donors with no clinical history of low back pain, and 12 herniated and 8 degenerated NP tissues isolated from the patients undergoing spinal surgery were subjected to study the alteration in the microbial diversity. Objectives: To understand in normal IVD, whether the colonization of bacteria to the NP is through the EP in discs with intact annulus fibrosus. To identify significantly differing microbial population(s) between normal and diseased IVD (NP). Background of the study: There is increasing evidence for subclinical infection by fastidious low, growing bacteria to be a cause of disc degeneration. Although the presence of bacteria in NP has been reported well in literature, the source of bacteria is not clearly proved as the disc is avascular in healthy condition. Documentation of similar bacterial populations in the EP and NP may add proof that bacterial inoculation of NP occurs via the EP. Materials and methods: Sixteen EP and their corresponding NP excised from brain-dead voluntary organ donors with no history of back pain and 20 diseased discs collected from patients undergoing microdiscectomy/fusion surgery were used for profiling microbiome through 16S rRNA amplicon sequencing using primers specific for V1-V9 hypervariable regions. Changes in bacterial diversity and abundance were analysed to identify the key microbial populations in normal IVD NP and EP tissues and those significantly altered in diseased IVD (NP). Results: NP and EP shared a similar spectrum of microbiome but with varying abundance. The five dominant phyla identified were Proteobacteria, Firmicutes, Actinobacteria, OD1, and Bacteroidetes. Proteobacteria was found to be the most abundant phyla in both NP (62%) and EP (53%) of the normal IVD. This was followed by Firmicutes (16%), Actinobacteriota (11%), OD1 (Parcubacteria) (7.6%), and Bacteroidetes (2%) in NP and Firmicutes (23.4%), OD1 (Parcubacteria) (17.6%), Actinobacteriota (2.8%), and Bacteroidetes (2.6%) in EP, respectively. Under diseased conditions, Proteobacteria (68%) was dominant when compared with other phyla. However, there was no significant difference in the abundance of Proteobacteria between the normal and diseased discs. Interestingly, the other dominant phyla such as Firmicutes (Normal-NP: 16.2%; Diseased-NP: 4.02%) and Actinobacteria (Normal-NP: 11%; Diseased-NP: 0.99%) showed a significant reduction in degenerated discs. To understand the key microbial populations that are significantly altered during disease, correlation analysis was performed among the three phyla, which revealed a negative correlation in the ratio of Actinobacteria + Firmicutes vs. Proteobacteria (p = 0.001) in DD. Conclusion: Results of our study clearly demonstrated a similar bacterial diversity but with varying abundance between the EP and NP, suggesting the existence of the endplate-nucleus pulposus axis in the normal IVD microbiome. Further, our results have indicated that the changes in the abundance of Actinobacteria + Firmicutes vs. Proteobacteria during DDD need further investigation.

4.
Microb Genom ; 8(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917163

RESUMO

16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco's capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
5.
Eur Spine J ; 31(2): 389-399, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34611718

RESUMO

PURPOSE: The aim of this observational radiographic and proteomic study is to explore the influence of both Modic change (MC) and endplate avulsion (EPA) on the inflammation profile of herniated discs using a proteomic and bioinformatics approach. METHODS: Fifteen nucleus pulposus (NP) harvested from surgery underwent LC-MS/MC analysis, the proteome was subsequently scanned for inflammatory pathways using a bioinformatics approach. All proteins that were identified in inflammatory pathways and Gene Ontology and present in > 7 samples were integrated in a multiple regression analysis with MC and EPA as predictors. Significant proteins were imputed in an interaction and pathway analysis. RESULTS: Compared to annulus fibrosus tear (AFT), six proteins were significantly altered in EPA: catalase, Fibrinogen beta chain, protein disulfide-isomerase, pigment epithelium-derived factor, osteoprotegerin and lower expression of antithrombin-III, all of which corresponded to an upregulation of pathways involved in coagulation and detoxification of reactive oxygen species (ROS). Moreover, the presence of MC resulted in a significant alteration of nine proteins compared to patients without MC. Patients with MC showed a significantly higher expression of clusterin and lumican, and lower expression of catalase, complement factor B, Fibrinogen beta chain, protein disulfide-isomerase, periostin, Alpha-1-antitrypsin and pigment epithelium-derived factor. Together these altered protein expressions resulted in a downregulation of pathways involved in detoxification of ROS, complement system and immune system. Results were verified by Immunohistochemistry with CD68 cell counts. CONCLUSION: Both EPA and MC status significantly influence disc inflammation. The beneficial inflammatory signature of EPA illustrates that endplate pathology does not necessarily have to worsen the outcome, but the pathological inflammatory state is dependent on the presence of MC.


Assuntos
Deslocamento do Disco Intervertebral , Disco Intervertebral , Biologia Computacional , Humanos , Inflamação/patologia , Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/patologia , Vértebras Lombares/cirurgia , Imageamento por Ressonância Magnética , Proteômica
6.
Sci Rep ; 11(1): 19013, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561485

RESUMO

Degeneration of the intervertebral disc is associated with a decrease in extra-cellular matrix (ECM) content due to an imbalance in anabolic and catabolic signaling. Our previous study profiled the core matrisome of fetal NP's and identified various proteins with anabolic potential for regenerative therapies. This study aims to complement those results by exploring ECM regulators, associated proteins and secreted factors of the fetal nucleus pulposus (NP). Proteomic data of 9 fetal, 7 healthy adults (age 22-79), and 11 degenerated NP's was analyzed. Based on the selection criteria, a total of 45 proteins were identified, of which 14 were uniquely expressed or upregulated in fetus compared to adult NP's. Pathway analysis with these proteins revealed a significant upregulation of one pathway and two biological processes, in which 12 proteins were involved. Prolyl 4 hydroxylase (P4HA) 1 and 2, Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) 1, and Heat shock protein 47 (SERPINH1) were involved in 'collagen biosynthesis' pathway. In addition, PLOD 1, SERPINH1, Annexin A1 and A4, CD109 and Galectin 3 (LGALS3) were all involved in biological process of 'tissue development'. Furthermore Annexin A1, A4 and A5, LGALS-3 and SERPINF1 were featured in 'negative regulation of cell death'. In conclusion, additionally to core ECM proteome, this study reveals ECM regulators and ECM affiliated proteins of interest to study for regenerative therapies, and their potential should be validated in future mechanistic experiments.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Núcleo Pulposo/metabolismo , Proteoma/metabolismo , Proteômica , Medicina Regenerativa , Adulto , Idoso , Feminino , Feto/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Comput Struct Biotechnol J ; 19: 2687-2698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093985

RESUMO

Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which can be inferred from microbiome profiling data. In particular, network-based approaches have proven helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex conditional dependence-based methods. We highlight common biases encountered in microbial profiles and discuss mitigation strategies employed by different tools and their trade-off with increased computational complexity. Finally, we discuss current limitations that motivate further method development to infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environments in the future.

8.
Biochem Pharmacol ; 186: 114490, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647259

RESUMO

Canthin-6-one (Cant) is an indole alkaloid found in several botanical drugs used as medicines, reported to be gastroprotective, anti-inflammatory, anti-microbial, anti-diarrheal and anti-proliferative. We aimed to explore Cant in the management of colitis using a trinitrobenzenesulfonic acid (TNBS)-induced rat model. Cant (1, 5 and 25 mg/kg) was administered by oral gavage to Wistar rats followed by induction of colitis with TNBS. Macroscopic and histopathological scores, myeloperoxidase (MPO), malondialdehyde (MDA) and reduced glutathione (GSH) were assessed in colon tissues. Pro- (TNF-α, IL-1ß and IL-12p70) and anti-inflammatory (IL-10) cytokines, and vascular endothelial growth factor (VEGF) were also quantified. Mitogen-activated protein kinase 14 (MAPK14) and Toll-like receptor-8 (TLR8), as putative targets, were considered through in silico analysis. Cant (5 and 25 mg/kg) reduced macroscopic and histological colon damage scores in TNBS-treated rats. MPO and MDA were reduced by up to 61.69% and 92.45%, respectively, compared to TNBS-treated rats alone. Glutathione concentration was reduced in rats administered with TNBS alone (50.00% of sham group) but restored to 72.73% (of sham group) with Cant treatment. TNF-α, IL-1ß, IL-12p70 and VEGF were reduced, and anti-inflammatory IL-10 was increased following Cant administration compared to rats administered TNBS alone. Docking ligation results for MAPK14 (p38α) and TLR8 with Cant, confirmed that these proteins are feasible putative targets. Cant has an anti-inflammatory effect in the intestine by down-regulating molecular immune mediators and decreasing oxidative stress. Therefore, Cant could have therapeutic potential for the treatment of inflammatory bowel disease and related syndromes.


Assuntos
Carbolinas/uso terapêutico , Colite/metabolismo , Simulação por Computador , Alcaloides Indólicos/uso terapêutico , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Trinitrobenzenossulfônico/toxicidade , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carbolinas/química , Carbolinas/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/uso terapêutico , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Estresse Oxidativo/fisiologia , Estrutura Secundária de Proteína , Ratos , Ratos Wistar
9.
Spine J ; 21(1): 5-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344061

RESUMO

BACKGROUND CONTEXT: Small leucine-rich proteoglycans (SLRPs) play an essential role in extracellular matrix (ECM) organization and function. Recently, dysregulation of SLRPs has been implicated in degenerative disc disease (DDD). An in-depth analysis using high-throughput proteomic sequencing might provide valuable information on their implications in health and disease. PURPOSE: To utilize proteomics for analyzing the expression of SLRPs in fetal, healthy adult, and degenerated discs, to identify possible molecular targets to halt or reverse the degenerative process. STUDY DESIGN: Experimental analysis. METHODS: Proteomic signatures of 8 magnetic resonance imaging (MRI) normal lumbar discs (ND) [harvested from brain dead alive organ donors] were compared to 8 fetal disc samples (FD) [harvested from fetal spines devoid of congenital anomalies following spontaneous or medical termination of pregnancy] and 8 degenerate discs (DD) [collected from patients undergoing fusion surgery]. The various functional pathways along with the differential expression of SLRPs and the associated changes in collagens, large proteoglycans (LLRPs), matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) have been analyzed further using bioinformatics. This project was self-funded by the Ganga Orthopedic Research and Education Foundation. RESULTS: ESI-LC-MS/MS analysis revealed a total of 1,029 proteins in FD, 1,785 proteins in ND, and 1,775 proteins in DD. Fetal disc proteins were engaged mainly in ribosomal pathways (indicating active proliferation and regenerative potential). The healthy adult discs (ND) primarily participated in ECM maintenance and basic metabolic pathways, whereas the unique proteins of DD group were involved in inflammatory (Complement and coagulation cascades, Systemic Lupus Erythematosus and Leukocyte transendothelial migration) pathways and infective (Staphylococcus aureus infection, Prion diseases, Amoebiasis, Pertussis, and Legionellosis) channels which favor the recent concepts of inflammaging and subclinical infection as causes of DDD. Analysis of SLRPs revealed the upregulation of Biglycan in FDs and downregulation of Lumican, Decorin, Prolargin, and Chondroadherin in the DD group. The universal decrease in the abundance of SLRPs in the DD group was associated with an increase in MMPs and a reduction in TIMPs, collagen and LLRP content. CONCLUSIONS: Our study documents the influence of SLRPs in the maintenance of disc health and also the need for future research in using them for disc regeneration. CLINICAL SIGNIFICANCE: The various SLRPs that we identified are all known to have a beneficial influence on ECM integrity and a negative effect on the degenerative process at different stages in the evolution of degeneration. Biglycan, which is abundantly present in a fetus, may be suitable for regenerative therapy, and the other SLRPs like Lumican, Prolargin, Decorin, and Chondroadherin may serve the same purpose and/or as biomarkers.


Assuntos
Degeneração do Disco Intervertebral , Proteoglicanos Pequenos Ricos em Leucina , Adulto , Proteoglicanas de Sulfatos de Condroitina , Cromatografia Líquida , Proteínas da Matriz Extracelular , Feto , Humanos , Proteômica , Espectrometria de Massas em Tandem
10.
Sci Rep ; 10(1): 15684, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973250

RESUMO

Intervertebral disc degeneration is accompanied by a loss of Extra-cellular matrix (ECM) due to an imbalance in anabolic and catabolic pathways. Identifying ECM proteins with anabolic and/or regenerative potential could be the key to developing regenerative therapies. Since human fetal discs grow and develop rapidly, studying these discs may provide valuable insights on proteins with regenerative potential. This study compares core matrisome of 9 fetal and 7 healthy adult (age 22-79) nucleus pulposus (NP), using a proteomic and bioinformatic approach. Of the 33 upregulated proteins in fetus NP's, 20 of which were involved in ECM assembly pathways: fibromodulin, biglycan, heparan sulfate proteoglycan 2, chondroitin sulfate proteoglycan 4, procollagen C-endopeptidase enhancer and Collagen-type 1a1, 1a2, 6a1, 6a3, 11a1, 11a2, 12a1, 14a1 and 15a1. Moreover, 10 of the upregulated proteins were involved in growth pathways 'PI3L-Akt signaling' and 'regulation of insulin like growth factor transport and uptake.' Thrombospondin 1,3 and 4, tenascin C, matrilin-3, and collagen- type 1a1, 1a2, 6a1, 6a3 and 9a1. Additionally, matrillin-2 and 'Collagen triple helix repeat containing 1' were identified as possible regenerative proteins due to their involvement in 'Regeneration' and 'tissue development' respectively. In conclusion, the consistency of human fetal NP's differs greatly from that of healthy adults. In view of these outcomes, the core matrisome of human fetal discs contains an abundant number of proteins that could potentially show regenerative properties, and their potential should be explored in future machinal experiments.


Assuntos
Matriz Extracelular/metabolismo , Feto/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/fisiologia , Proteômica , Regeneração , Ontologia Genética , Humanos
11.
Neurospine ; 17(2): 426-442, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32615701

RESUMO

OBJECTIVE: To catalog and characterize the proteome of normal human intervertebral disc (IVD). METHODS: Nine magnetic resonance imaging (MRI) normal IVDs were harvested from 9 different brain dead yet alive voluntary organ donors and were subjected to electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) acquisition. RESULTS: A total of 1,116 proteins were identified. Functional enrichment analysis tool DAVID ver. 6.8 categorized: extracellular proteins (38%), intracellular (31%), protein-containing complex (13%), organelle (9%), membrane proteins (6%), supramolecular complex (2%), and 1% in the cell junction. Molecular function revealed: binding activity (42%), catalytic activity (31%), regulatory activity (14%), and structural activity (7%). Molecular transducer, transporter, and transcription regulator activity together contributed to 6%. A comparison of the proteins obtained from this study to others in the literature showed a wide variation in content with only 3% of bovine, 5% of murine, 54% of human scoliotic discs, and 10.2% of discs adjacent to lumbar burst fractures common to our study of organ donors. Between proteins reported in scoliosis and lumbar fracture patients, only 13.51% were common, further signifying the contrast amongst the various MRI normal IVD samples. CONCLUSION: The proteome of "healthy" human IVDs has been defined, and our results show that proteomic data on IVDs obtained from scoliosis, fracture patients, and cadavers lack normal physiological conditions and should not be used as biological controls despite normal MRI findings. This questions the validity of previous studies that have used such discs as controls for analyzing the pathomechanisms of disc degeneration.

12.
Eur Spine J ; 29(7): 1621-1640, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32409889

RESUMO

BACKGROUND: To document the role of sub-clinical infections in disc disorders and investigate the existence of microbiome in intervertebral discs (IVD). METHODS: Genomic DNA from 24 lumbar IVDs [8-MRI normal discs (ND) from brain dead yet alive organ donors, 8-disc herniation (DH), 8-disc degeneration (DD)] was subjected to 16SrRNA sequencing for profiling the diversity of human disc microbiome in health and disease. The disc microbiome was further compared to established human gut and skin microbiomes. RESULTS: All healthy MRI normal discs from brain dead yet alive organ donors also had a rich bacterial presence. A total of 424 different species (355-ND, 346-DD, and 322-DH) were detected, with 42.75% OTUs being classified at kingdom level, 44% at the phylum level, 22.62% at genus level, and 5.5% at species level. Varying biodiversity and abundance between healthy and diseased discs were documented with protective bacteria being abundant in normal discs, and putative pathogens abundant in DD and DH. Propionibacterium acnes had a similar but lower abundance to other pathogens in all three groups ND (3.07%), DD (3.88%), DH (1.56%). Fifty-eight bacteria were common between gut and IVD microbiomes, 29 between skin and IVD microbiomes, and six common to gut/skin/IVD. CONCLUSION: Our study challenges the hitherto concept of sterility in healthy IVD and documented a microbiome even in MRI normal healthy discs. The varying abundance of bacteria between ND, DD, and DH documents 'dysbiosis' as a possible etiology of DD. Many known pathogens were identified in greater abundance than Propionibacterium acnes, and there was evidence for the presence of the gut/skin/spine microbiome axis.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Microbiota , Disbiose , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem
13.
Asian Spine J ; 14(4): 409-420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31995966

RESUMO

STUDY DESIGN: Profiling proteins expressed in the nucleus pulposus of fetal intervertebral disc (IVD). PURPOSE: To evaluate the molecular complexity of fetal IVDs not exposed to mechanical, traumatic, inflammatory, or infective insults to generate improved knowledge on disc homeostasis. OVERVIEW OF LITERATURE: Low back pain is the most common musculoskeletal disorder, causing a significant reduction in the quality of life, and degenerative disc disorders mainly contribute to the increasing socioeconomic burden. Despite extensive research, the causative pathomechanisms behind degenerative disc disorders are poorly understood. Precise molecular studies on the intricate biological processes involved in maintaining normal disc homeostasis are needed. METHODS: IVDs of nine fetal specimens obtained from medical abortions were used to dissect out the annulus fibrosus and nucleus pulposus under sterile operating conditions. Dissected tissues were transferred to sterile Cryovials and snap frozen in liquid nitrogen before transporting to the research laboratory for protein extraction and further liquid chromatography tandem mass spectrometry (LC-MS/ MS) analysis. Collected data were further analyzed using Gene Functional Classification Tool in DAVID and STRING databases. RESULTS: A total of 1,316 proteins were identified through LC-MS/MS analysis of nine fetal IVD tissues. Approximately 247 proteins present in at least four fetal discs were subjected to further bioinformatic analysis. The following 10 clusters of proteins were identified: collagens, ribosomal proteins, small leucine-rich proteins, matrilin and thrombospondin, annexins, protein disulfide isomerase family proteins and peroxiredoxins, tubulins, histones, hemoglobin, and prolyl 4-hydroxylase family proteins. CONCLUSIONS: This study provides fundamental information on the proteome networks involved in the growth and development of healthy fetal discs in humans. Systematic cataloging of proteins involved in various structural and regulatory processes has been performed. Proteins expressed most abundantly (collagen type XIV alpha 1 chain, biglycan, matrilin 1, and thrombospondin 1) in their respective clusters also elucidate the possibility of utilizing these proteins for potential regenerative therapies.

14.
Spine J ; 20(1): 48-59, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125691

RESUMO

BACKGROUND CONTEXT: The true understanding of aging and disc degeneration (DD) is still elusive. MRI has not helped our attempts to understand the health and disease status of the discs as it reflects mainly the end morphologic changes and not the changes at a molecular level. Understanding degeneration at a molecular level through proteomics might allow differentiation from normal aging and also aid in the development of biomarkers for early diagnosis and preventive therapies. PURPOSE: To utilize proteomics to understand the molecular basis of healthy, aging, and degenerating discs and conclusively differentiate normal aging and degeneration. STUDY DESIGN: Proteomic analysis of human intervertebral disc samples. METHODS: L4-L5 disc samples from three groups were acquired and subjected to proteomic analysis. Samples from individuals aged in the second, third, and fourth decades were used to represent young healthy discs (Group A). Those from MRI normal donors aged in the fifth, sixth, and seventh decades represented normal aging (Group B). Five degenerated discs obtained from patients at surgery represented degeneration (Group C). The entire proteome map and alteration in protein expressions were further analyzed using bioinformatics analysis. This was a self-funded project. RESULTS: There were 84 common proteins. Specific proteins numbered 225 in A, 315 in B, and 283 in C. By gene ontology biological process identification, Group A predominated with extracellular matrix organization, cytoskeletal structural and normal metabolic proteins. Group B differed in having additional basal expression of immune response, complement inhibitors, and senescence proteins. Group C was different, with upregulation of proteins associated with oxidative stress response, positive regulators of apoptosis, innate immune response, complement activation and defense response to gram positive bacteria indicating ongoing inflammaging. CONCLUSIONS: Our study documented diverse proteome signatures between the young, aging and degenerating discs. Inflammaging was the main differentiator between normal biological aging and DD. CLINICAL SIGNIFICANCE: Multiple inflammatory molecules unique to DD were identified, allowing the possibility of developing specific biomarkers for early diagnosis and thereby provide evidence-based metrics for preventive measures rather than surgical intervention and also to monitor progress of the disease.


Assuntos
Envelhecimento/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Envelhecimento/patologia , Biomarcadores/metabolismo , Feminino , Humanos , Disco Intervertebral/crescimento & desenvolvimento , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Região Lombossacral/patologia , Masculino , Pessoa de Meia-Idade , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...