Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 335: 178-190, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34022322

RESUMO

Conventional anticancer therapies exploiting platinum-based drugs rely principally on the intravascular injection of the therapeutic agent. The anticancer drug is distributed throughout the body by the systemic blood circulation undergoing cellular uptake, rapid clearance and excretion. Consequently, only a small portion of the platinum-based drug reaches the tumor site, which is associated with severe side effects. For this reason, targeted delivery systems are of great need since they offer enhanced and selective delivery of a drug to cancerous cells making the therapy safe and more effective. Up to date, a variety of the Pt-based drug targeted delivery systems (Pt-based DTDSs) utilizing nanomaterials have been developed and tested using a range of analytical techniques that provided essential information on their synthesis, stability, biodistribution and cytotoxicity. Here we summarize those experimental techniques indicating their applicability at different stages of the research, as well as pointing out their strengths, advantages, drawbacks and limitations. Also, the existing strategies and approaches are critically reviewed with the objective to reveal and give rise to the development of the analytical methodology suitable for reliable Pt-based DTDSs characterization which would eventually result in novel therapies and better patients' outcomes.


Assuntos
Antineoplásicos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Platina , Distribuição Tecidual
2.
Int J Cosmet Sci ; 34(5): 451-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22612984

RESUMO

Bronopol (2-bromo-2-nitropropane-1,3-diol) is used as preservative in cosmetic industry. Its main role in commercial products consists in protection of the cosmetic composition stability by inhibiting the development of micro-organisms. Unfortunately, preservatives can also undergo the degradation processes. The aim of examinations was to prove that bronopol decomposes in aqueous solutions and storage conditions have a significance influence on its degradation rate. High-performance liquid chromatography method (methanol/water with hydrochloric acid 5:95 v/v) with spectrophotometric detection (210 nm) was used for examining the decomposition rate of bronopol. The impact of chemical (addition of cosmetics components: citric acid and/or sodium dodecylsulfate) and physical (elevated and ambient temperature, sunlight or ultraviolet radiation and air access) factors has been elaborated. Bronopol decomposes most rapidly (independently on the sample surrounding conditions) when it is in solution with sodium dodecylsulfate, the inverse dependence is observed in the presence of two compounds - citric acid and sodium dodecylsulfate. Additionally, the elevated temperature causes the acceleration of decomposition. Bronopol degradation by-products were also identified as methanol, formic acid, tris(hydroxymethyl)methane and 2-bromo-2-nitroethanol.


Assuntos
Cosméticos/química , Conservantes Farmacêuticos/química , Propilenoglicóis/química , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/química , Dodecilsulfato de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...