Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 44(13): 6173-84, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27060141

RESUMO

RNA polymerase II (Pol II)-transcribed genes embedded within the yeast rDNA locus are repressed through a Sir2-dependent process called 'rDNA silencing'. Sir2 is recruited to the rDNA promoter through interactions with RNA polymerase I (Pol I), and to a pair of DNA replication fork block sites (Ter1 and Ter2) through interaction with Fob1. We utilized a reporter gene (mURA3) integrated adjacent to the leftmost rDNA gene to investigate localized Pol I and Fob1 functions in silencing. Silencing was attenuated by loss of Pol I subunits or insertion of an ectopic Pol I terminator within the adjacent rDNA gene. Silencing left of the rDNA array is naturally attenuated by the presence of only one intact Fob1 binding site (Ter2). Repair of the 2nd Fob1 binding site (Ter1) dramatically strengthens silencing such that it is no longer impacted by local Pol I transcription defects. Global loss of Pol I activity, however, negatively affects Fob1 association with the rDNA. Loss of Ter2 almost completely eliminates localized silencing, but is restored by artificially targeting Fob1 or Sir2 as Gal4 DNA binding domain fusions. We conclude that Fob1 and Pol I make independent contributions to establishment of silencing, though Pol I also reinforces Fob1-dependent silencing.


Assuntos
DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , RNA Polimerase I/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Sítios de Ligação , Inativação Gênica , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética
2.
Aging (Albany NY) ; 7(3): 177-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25769345

RESUMO

Yeast chronological lifespan (CLS) is extended by multiple genetic and environmental manipulations, including caloric restriction (CR). Understanding the common changes in molecular pathways induced by such manipulations could potentially reveal conserved longevity mechanisms. We therefore performed gene expression profiling on several long-lived yeast populations, including anade4∆mutant defective in de novo purine (AMP) biosynthesis, and a calorie restricted WT strain. CLS was also extended by isonicotinamide (INAM) or expired media derived from CR cultures. Comparisons between these diverse long-lived conditions revealed a common set of differentially regulated genes, several of which were potential longevity biomarkers. There was also enrichment for genes that function in CLS regulation, including a long-lived adenosine kinase mutant (ado1∆) that links CLS regulation to the methyl cycle and AMP. Genes co-regulated between the CR and ade4∆ conditions were dominated by GO terms related to metabolism of alternative carbon sources, consistent with chronological longevity requiring efficient acetate/acetic acid utilization. Alternatively, treating cells with isonicotinamide (INAM) or the expired CR media resulted in GO terms predominantly related to cell wall remodeling, consistent with improved stress resistance and protection against external insults like acetic acid. Acetic acid therefore has both beneficial and detrimental effects on CLS.


Assuntos
Biomarcadores/metabolismo , Saccharomyces cerevisiae/fisiologia , Restrição Calórica , Meios de Cultivo Condicionados , Perfilação da Expressão Gênica , Mutação , Niacinamida
3.
Cancer Res ; 71(4): 1313-24, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21212412

RESUMO

MicroRNAs (miRNA) have been globally profiled in cancers but there tends to be poor agreement between studies including in the same cancers. In addition, few putative miRNA targets have been validated. To overcome the lack of reproducibility, we profiled miRNAs by next generation sequencing and locked nucleic acid miRNA microarrays and verified concordant changes by quantitative RT-PCR. Notably, miR-125b and the miR-99 family members miR-99a, -99b, and -100 were downregulated in all assays in advanced prostate cancer cell lines relative to the parental cell lines from which they were derived. All four miRNAs were also downregulated in human prostate tumor tissue compared with normal prostate. Transfection of miR-99a, -99b, or -100 inhibited the growth of prostate cancer cells and decreased the expression of prostate-specific antigen (PSA), suggesting potential roles as tumor suppressors in this setting. To identify targets of these miRNAs, we combined computational prediction of potential targets with experimental validation by microarray and polyribosomal loading analysis. Three direct targets of the miR-99 family that were validated in this manner were the chromatin-remodeling factors SMARCA5 and SMARCD1 and the growth regulatory kinase mTOR. We determined that PSA is posttranscriptionally regulated by the miR-99 family members, at least partially, by repression of SMARCA5. Together, our findings suggest key functions and targets of miR-99 family members in prostate cancer suppression and prognosis.


Assuntos
Carcinoma/patologia , Proliferação de Células , MicroRNAs/genética , Antígeno Prostático Específico/genética , Neoplasias da Próstata/patologia , Adenosina Trifosfatases/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/análise , Análise em Microsséries , Família Multigênica/fisiologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Interferência de RNA
4.
PLoS Genet ; 6(4): e1000921, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20421943

RESUMO

Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA "bar-code" sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Delta mutant and exacerbated by a short-lived atg16Delta autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Senescência Celular , Regulação Fúngica da Expressão Gênica , Mutação
5.
Aging Cell ; 8(6): 633-42, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19732044

RESUMO

Aging research has developed rapidly over the past decade, identifying individual genes and molecular mechanisms of the aging process through the use of model organisms and high throughput technologies. Calorie restriction (CR) is the most widely researched environmental manipulation that extends lifespan. Activation of the NAD(+)-dependent protein deacetylase Sir2 (Silent Information Regulator 2) has been proposed to mediate the beneficial effects of CR in the budding yeast Saccharomyces cerevisiae, as well as other organisms. Here, we show that in contrast to previous reports, Sir2 is not stimulated by CR to strengthen silencing of multiple reporter genes in the rDNA of S. cerevisiae. CR does modestly reduce the frequency of rDNA recombination, although in a SIR2-independent manner. CR-mediated repression of rDNA recombination also does not correlate with the silencing of Pol II-transcribed noncoding RNAs derived from the rDNA intergenic spacer, suggesting that additional silencing-independent pathways function in lifespan regulation.


Assuntos
DNA Fúngico/genética , DNA Ribossômico/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Glucose/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes Reporter , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Transcrição Gênica
6.
Genetics ; 180(2): 797-810, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18780747

RESUMO

The histone deacetylase activity of Sir2p is dependent on NAD(+) and inhibited by nicotinamide (NAM). As a result, Sir2p-regulated processes in Saccharomyces cerevisiae such as silencing and replicative aging are susceptible to alterations in cellular NAD(+) and NAM levels. We have determined that high concentrations of NAM in the growth medium elevate the intracellular NAD(+) concentration through a mechanism that is partially dependent on NPT1, an important gene in the Preiss-Handler NAD(+) salvage pathway. Overexpression of the nicotinamidase, Pnc1p, prevents inhibition of Sir2p by the excess NAM while maintaining the elevated NAD(+) concentration. This growth condition alters the epigenetics of rDNA silencing, such that repression of a URA3 reporter gene located at the rDNA induces growth on media that either lacks uracil or contains 5-fluoroorotic acid (5-FOA), an unusual dual phenotype that is reminiscent of telomeric silencing (TPE) of URA3. Despite the similarities to TPE, the modified rDNA silencing phenotype does not require the SIR complex. Instead, it retains key characteristics of typical rDNA silencing, including RENT and Pol I dependence, as well as a requirement for the Preiss-Handler NAD(+) salvage pathway. Exogenous nicotinamide can therefore have negative or positive impacts on rDNA silencing, depending on the PNC1 expression level.


Assuntos
DNA Ribossômico/genética , Inativação Gênica , Niacinamida/metabolismo , Nicotinamidase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , DNA Ribossômico/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , NAD/metabolismo , Nicotinamidase/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Telômero/metabolismo
7.
Aging Cell ; 6(5): 649-62, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17711561

RESUMO

Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.


Assuntos
Restrição Calórica , Histona Desacetilases/metabolismo , Saccharomyces cerevisiae/fisiologia , Sirtuínas/metabolismo , Respiração Celular , Metabolismo Energético , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Hexoquinase/genética , Hexoquinase/metabolismo , Histona Desacetilases/genética , Longevidade , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Genetics ; 173(4): 1939-50, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16783021

RESUMO

The establishment of transcriptional silencing in yeast requires cell-cycle progression, but the nature of this requirement is unknown. Sir2 is a protein deacetylase that is required for gene silencing in yeast. We have used temperature-sensitive alleles of the SIR2 gene to assess Sir2's contribution to silencing as a function of the cell cycle. When examined in vivo, these conditional alleles fall into two classes: one class exhibits a loss of silencing when raised to the nonpermissive temperature regardless of cell-cycle position, while the second class exhibits a mitosis-specific silencing defect. Alleles of the first class have a primary defect in protein deacetylase activity, while the alleles of the second class are specifically defective in Sir2-Sir4 interactions at nonpermissive temperatures. Using a SIR2 temperature-sensitive allele, we show that silencing can be established at the HML locus during progression through the G2/M-G1 interval. These results suggest that yeast heterochromatin undergoes structural transitions as a function of the cell cycle and support the existence of a critical assembly step for silent chromatin in mitosis.


Assuntos
Alelos , Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Inativação Gênica , Histona Desacetilases/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuínas/genética , Histona Desacetilases/metabolismo , Temperatura Alta , Mitose/genética , Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/metabolismo
9.
Genetics ; 162(2): 973-6, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12399404

RESUMO

We have identified histone H4 as a high-expression suppressor of Sir2-induced inviability in yeast cells. Overexpression of histone H3 does not suppress Sir2-induced lethality, nor does overexpression of histone H4 alleles associated with silencing defects. These results suggest a direct and specific interaction between Sir2 and H4 in the silencing mechanism.


Assuntos
Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuínas/genética , Genes Letais , Histona Desacetilases/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/metabolismo , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...