Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Dis ; 105(10): 2836-2843, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33900116

RESUMO

Root-knot nematodes (RKNs) are major threats to crops through attacking the roots, which induces an abnormal development of the plant. Meloidogyne hapla is of particular concern, as it is currently expanding its distribution area and displays a wide host range. Effective plant protection against this RKN requires early detection, as even a single individual can cause severe economic losses on susceptible crops. Molecular tools are of particular value for this purpose, and among them, quantitative PCR (qPCR) presents many advantages (i.e., sensitivity, specificity, and rapidity of diagnosis at a reduced cost). Although a few studies have already been proposed for detecting M. hapla through this technique, they lack experimental details and performance testing, suffer from low taxonomic resolution, and/or require expensive hydrolysis probes. Here, we propose a qPCR detection method that uses SYBR Green with developed primers amplifying a fragment of the cytochrome oxidase I mitochondrial region. The method was developed and evaluated following the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines to ensure its quality (i.e., sensitivity, specificity, repeatability, reproducibility, and robustness). The results demonstrate that the newly developed method fulfills its goals, as it proved specific to M. hapla and allowed for a reproductible detection level as low as 1.25 equivalent of a juvenile individual. All criteria associated with the MIQE guidelines were also met, so the method is of general use for the reliable early detection of M. hapla.


Assuntos
Tylenchoidea , Animais , Primers do DNA , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Tylenchoidea/genética
2.
BMC Ecol ; 17(1): 41, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258485

RESUMO

BACKGROUND: Root-knot nematodes (RKN) are major pest of olive tree (Olea europaea ssp. europaea), especially in nurseries and high-density orchards. Soil samples were collected from main olive growing areas of Morocco, to characterize Meloidogyne species and to discuss the contribution of biotic and abiotic factors in their spatial distribution. RESULTS: RKN were found in 159 soil samples out of 305 from nurseries (52.1% occurrence) and in 11 out of 49 soil samples from orchards (23.2% occurrence). Biochemical and molecular characterisation (PAGE esterase and SCAR) revealed the dominance of M. javanica both in nurseries and orchards with minor presence of M. incognita only in nurseries, and M. arenaria in only one nursery. RKN were distributed on aggregated basis. Frequent presence of M. javanica in orchards might have come from nurseries. In contrast, the detection of M. incognita in nurseries alone suggests that this species could not reproduce in orchards because of either the competition with other plant-parasitic nematodes or unfit local habitats. The impact of environmental variables (climate, habitat origin and physicochemical characteristics of the substrates) on the distribution of Meloidogyne species is also discussed. CONCLUSION: Olive nurseries in Morocco are not able to guarantee the safety of rooted plants. As a result, olive production systems are exposed to strong RKN invasion risks. Consequently, the use of healthy substrates in nurseries may prevent plant-parasitic nematode induction in orchards.


Assuntos
Distribuição Animal , Olea/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Biota , Marrocos , Raízes de Plantas/parasitologia , Solo/parasitologia
3.
BMC Ecol ; 17(1): 4, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166763

RESUMO

BACKGROUND: Plant-parasitic nematodes (PPN) are major crop pests. On olive (Olea europaea), they significantly contribute to economic losses in the top-ten olive producing countries in the world especially in nurseries and under cropping intensification. The diversity and the structure of PPN communities respond to environmental and anthropogenic forces. The olive tree is a good host plant model to understand the impact of such forces on PPN diversity since it grows according to different modalities (wild, feral and cultivated olives). A wide soil survey was conducted in several olive-growing regions in Morocco. The taxonomical and the functional diversity as well as the structures of PPN communities were described and then compared between non-cultivated (wild and feral forms) and cultivated (traditional and high-density olive cultivation) olives. RESULTS: A high diversity of PPN with the detection of 117 species and 47 genera was revealed. Some taxa were recorded for the first time on olive trees worldwide and new species were also identified. Anthropogenic factors (wild vs cultivated conditions) strongly impacted the PPN diversity and the functional composition of communities because the species richness, the local diversity and the evenness of communities significantly decreased and the abundance of nematodes significantly increased in high-density conditions. Furthermore, these conditions exhibited many more obligate and colonizer PPN and less persister PPN compared to non-cultivated conditions. Taxonomical structures of communities were also impacted: genera such as Xiphinema spp. and Heterodera spp. were dominant in wild olive, whereas harmful taxa such as Meloidogyne spp. were especially enhanced in high-density orchards. CONCLUSIONS: Olive anthropogenic practices reduce the PPN diversity in communities and lead to changes of the community structures with the development of some damaging nematodes. The study underlined the PPN diversity as a relevant indicator to assess community pathogenicity. That could be taken into account in order to design control strategies based on community rearrangements and interactions between species instead of reducing the most pathogenic species.


Assuntos
Nematoides/fisiologia , Olea/parasitologia , Doenças das Plantas/parasitologia , Solo/parasitologia , Animais , Biodiversidade , Marrocos , Olea/fisiologia , Solo/química
4.
Braz. arch. biol. technol ; 57(6): 831-841, Nov-Dec/2014. graf
Artigo em Inglês | LILACS | ID: lil-730389

RESUMO

Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

5.
C R Biol ; 337(7-8): 423-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25103828

RESUMO

The olive tree (Olea europaea ssp. europaea.) is one of the most ancient cultivated trees. It is an emblematic species owing to its ecological, economic and cultural importance, especially in the Mediterranean Basin. Plant-parasitic nematodes are major damaging pests on olive trees, mainly in nurseries. They significantly contribute to economic losses in the top-ten olive-producing countries in the world. However, the damages they induce in orchards and nurseries are specifically documented only in a few countries. This review aims to update knowledge about the olive-nematode pathosystem by: (1) updating the list of plant-parasitic nematodes associated with olive trees; (2) analysing their diversity (taxonomic level, trophic groups, dominance of taxa), which allowed us (i) to assess the richness observed in each country, and (ii) to exhibit and describe the most important taxa able to induce damages on olive trees such as: Meloidogyne, Pratylenchus, Helicotylenchus, Xiphinema, Tylenchulus, Rotylenchulus, Heterodera (distribution especially in the Mediterranean Basin, pathogenicity and reactions of olive trees); (3) describing some management strategies focusing on alternative control methods; (4) suggesting new approaches for controlling plant-parasitic nematodes based on the management of the diversity of their communities, which are structured by several environmental factors such as olive diversity (due to domestication of wild olive in the past, and to breeding now), cropping systems (from traditional to high-density orchards), irrigation, and terroirs.


Assuntos
Nematoides/fisiologia , Infecções por Nematoides/parasitologia , Olea/parasitologia , Parasitos/fisiologia , Doenças das Plantas/parasitologia , Animais , Região do Mediterrâneo , Nematoides/classificação , Infecções por Nematoides/patologia , Parasitos/classificação
6.
C R Biol ; 337(5): 295-301, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24841955

RESUMO

Little is known about the variations of nematode mitogenomes (mtDNA). Sequencing a complete mtDNA using a PCR approach remains a challenge due to frequent genome reorganizations and low sequence similarities between divergent nematode lineages. Here, a genome skimming approach based on HiSeq sequencing (shotgun) was used to assemble de novo the first complete mtDNA sequence of a root-knot nematode (Meloidogyne graminicola). An AT-rich genome (84.3%) of 20,030 bp was obtained with a mean sequencing depth superior to 300. Thirty-six genes were identified with a semi-automated approach. A comparison with a gene map of the M. javanica mitochondrial genome indicates that the gene order is conserved within this nematode lineage. However, deep genome rearrangements were observed when comparing with other species of the superfamily Hoplolaimoidea. Repeat elements of 111 bp and 94 bp were found in a long non-coding region of 7.5 kb, as similarly reported in M. javanica and M. hapla. This study points out the power of next generation sequencing to produce complete mitochondrial genomes, even without a reference sequence, and possibly opening new avenues for species/race identification, phylogenetics and population genetics of nematodes.


Assuntos
DNA Mitocondrial/genética , Tylenchoidea/genética , Animais , Sequência de Bases , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , Genoma Mitocondrial , Dados de Sequência Molecular , RNA de Transferência/biossíntese , RNA de Transferência/genética , Análise de Sequência de DNA
7.
BMC Plant Biol ; 14: 53, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24559060

RESUMO

BACKGROUND: Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. RESULTS: The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. CONCLUSIONS: This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.


Assuntos
Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Animais , Capsicum/genética , Capsicum/parasitologia , Lactuca/genética , Lactuca/parasitologia , Proteínas de Plantas/genética
8.
Mol Biol Evol ; 24(1): 102-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17012373

RESUMO

Tsetse flies transmit African trypanosomes, responsible for sleeping sickness in humans and nagana in animals. This disease affects many people with considerable impact on public health and economy in sub-Saharan Africa, whereas trypanosomes' resistance to drugs is rising. The symbiont Sodalis glossinidius is considered to play a role in the ability of the fly to acquire trypanosomes. Different species of Glossina were shown to harbor genetically distinct populations of S. glossinidius. We therefore investigated whether vector competence for a given trypanosome species could be linked to the presence of specific genotypes of S. glossinidius. Glossina palpalis gambiensis individuals were fed on blood infected either with Trypanosoma brucei gambiense or Trypanosoma brucei brucei. The genetic diversity of S. glossinidius strains isolated from infected and noninfected dissected flies was investigated using amplified fragment length polymorphism markers. Correspondence between occurrence of these markers and parasite establishment was analyzed using multivariate analysis. Sodalis glossinidius strains isolated from T. brucei gambiense-infected flies clustered differently than that isolated from T. brucei brucei-infected individuals. The ability of T. brucei gambiense and T. brucei brucei to establish in G. palpalis gambiensis insect midgut is statistically linked to the presence of specific genotypes of S. glossinidius. This could explain variations in Glossina vector competence in the wild. Then, assessment of the prevalence of specific S. glossinidius genotypes could lead to novel risk management strategies.


Assuntos
Enterobacteriaceae/fisiologia , Variação Genética , Insetos Vetores/fisiologia , Simbiose , Trypanosoma brucei brucei/fisiologia , Moscas Tsé-Tsé/fisiologia , Animais , Enterobacteriaceae/genética , Filogenia , Polimorfismo de Fragmento de Restrição , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...