Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 51: 195-202, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30173121

RESUMO

Many tail-anchored (TA) membrane proteins are targeted to and inserted into the endoplasmic reticulum (ER) by the `guided entry of tail-anchored proteins' (GET) pathway. This post-translational pathway uses transmembrane-domain selective cytosolic chaperones for targeting, and a dedicated membrane protein complex for insertion. The past decade has seen rapid progress towards defining the molecular basis of TA protein biogenesis by the GET pathway. Here we review the mechanisms underlying each step of the pathway, emphasizing recent structural work and highlighting key questions that await future studies.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Humanos , Proteínas de Membrana/biossíntese , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Relação Estrutura-Atividade
2.
Mol Cell ; 67(2): 194-202.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28712723

RESUMO

Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Hidrólise , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação , Domínios Proteicos , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
Science ; 347(6226): 1152-5, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25745174

RESUMO

Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. We reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans the Get3 homodimer. Our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.


Assuntos
Adenosina Trifosfatases/química , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Citosol/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nature ; 477(7362): 61-6, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866104

RESUMO

Tail-anchored (TA) membrane proteins destined for the endoplasmic reticulum are chaperoned by cytosolic targeting factors that deliver them to a membrane receptor for insertion. Although a basic framework for TA protein recognition is now emerging, the decisive targeting and membrane insertion steps are not understood. Here we reconstitute the TA protein insertion cycle with purified components, present crystal structures of key complexes between these components and perform mutational analyses based on the structures. We show that a committed targeting complex, formed by a TA protein bound to the chaperone ATPase Get3, is initially recruited to the membrane through an interaction with Get2. Once the targeting complex has been recruited, Get1 interacts with Get3 to drive TA protein release in an ATPase-dependent reaction. After releasing its TA protein cargo, the now-vacant Get3 recycles back to the cytosol concomitant with ATP binding. This work provides a detailed structural and mechanistic framework for the minimal TA protein insertion cycle.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
Acta Biochim Pol ; 58(2): 243-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21666888

RESUMO

Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are implicated in cancerogenesis. It is still unclear how the cell determines which of the three possible Wnt response mechanisms should be activated, but the decision process is most likely dependent on Dishevelled proteins. Dishevelled family members interact with many diverse targets, however, molecular mechanisms underlying these binding events have not been comprehensively described so far. Here, we investigated the specificity of the PDZ domain from human Dishevelled-2 using C-terminal phage display, which led us to identification of a leucine-rich binding motif strongly resembling the consensus sequence of a nuclear export signal. PDZ interactions with several peptide and protein motifs (including the nuclear export signal sequence from Dishevelled-2 protein) were investigated in detail using fluorescence spectroscopy, mutational analysis and immunoenzymatic assays. The experiments showed that the PDZ domain can bind the nuclear export signal sequence of the Dishevelled-2 protein. Since the intracellular localization of Dishevelled is governed by nuclear localization and nuclear export signal sequences, it is possible that the intramolecular interaction between PDZ domain and the export signal could modulate the balance between nuclear and cytoplasmic pool of the Dishevelled protein. Such a regulatory mechanism would be of utmost importance for the differential activation of Wnt signaling cascades, leading to selective promotion of the nucleus-dependent Wnt ß-catenin pathway at the expense of non-canonical Wnt signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Domínios PDZ , Fosfoproteínas/química , Sequência de Aminoácidos , Proteínas Desgrenhadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Oligopeptídeos/química , Biblioteca de Peptídeos , Ligação Proteica , Transdução de Sinais
6.
Nature ; 466(7310): 1120-4, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20676083

RESUMO

Hundreds of proteins are inserted post-translationally into the endoplasmic reticulum (ER) membrane by a single carboxy-terminal transmembrane domain (TMD). During targeting through the cytosol, the hydrophobic TMD of these tail-anchored (TA) proteins requires constant chaperoning to prevent aggregation or inappropriate interactions. A central component of this targeting system is TRC40, a conserved cytosolic factor that recognizes the TMD of TA proteins and delivers them to the ER for insertion. The mechanism that permits TRC40 to find and capture its TA protein cargos effectively in a highly crowded cytosol is unknown. Here we identify a conserved three-protein complex composed of Bat3, TRC35 and Ubl4A that facilitates TA protein capture by TRC40. This Bat3 complex is recruited to ribosomes synthesizing membrane proteins, interacts with the TMDs of newly released TA proteins, and transfers them to TRC40 for targeting. Depletion of the Bat3 complex allows non-TRC40 factors to compete for TA proteins, explaining their mislocalization in the analogous yeast deletion strains. Thus, the Bat3 complex acts as a TMD-selective chaperone that effectively channels TA proteins to the TRC40 insertion pathway.


Assuntos
Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Ribossomos/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Transporte Proteico , Partícula de Reconhecimento de Sinal/metabolismo , Ubiquitinas/metabolismo
7.
Nature ; 461(7262): 361-6, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19675567

RESUMO

Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP.AlF(4)(-)-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Cristalografia por Raios X , Fluoretos/química , Fluoretos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Mathanococcus , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Canais de Translocação SEC , Relação Estrutura-Atividade
8.
J Struct Biol ; 165(1): 10-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18929667

RESUMO

We describe a detailed study of the RhoA-binding epitope of the GAP domain of Graf, including the determination of the thermodynamic and kinetic parameters of the interaction of wild-type domain, and of its 15 single-site mutants, with cognate GTPases. We show that residues important for the structural integrity of the Arg-finger loop are critical for binding Rho and for the catalytic activity of GAP, but GTPase selectivity appears to be modulated by a much more subtle interplay of electrostatic and hydrophobic interactions involving residues on the periphery of the main interface. The eight residues targeted in this study are involved in three distinct patches on the surface, two of which appear to interact with highly conserved regions of the GTPase, while the third plays a role in GTPase selectivity.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas Ativadoras de GTPase/genética , Guanosina Trifosfato/metabolismo , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Termodinâmica , Proteína rhoA de Ligação ao GTP/genética
9.
J Mol Biol ; 357(2): 621-31, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16445939

RESUMO

Miller-Dieker lissencephaly, or "smooth-brain" is a debilitating genetic developmental syndrome of the cerebral cortex, and is linked to mutations in the Lis1 gene. The LIS1 protein contains a so-called LisH motif at the N terminus, followed by a coiled-coil region and a seven WD-40 repeat forming beta-propeller structure. In vivo and in vitro, LIS1 is a dimer, and the dimerization is mediated by the N-terminal fragment and is essential for the protein's biological function. The recently determined crystal structure of the murine LIS1 N-terminal fragment encompassing residues 1-86 (N-LIS1) revealed that the LisH motif forms a tightly associated homodimer with a four-helix antiparallel bundle core, while the parallel coiled-coil situated downstream is stabilized by three canonical heptad repeats. This homodimer is uniquely asymmetric because of a distinct kink in one of the helices. Because the LisH motif is widespread among many proteins, some of which are implicated in human diseases, we investigated in detail the mechanism of N-LIS1 dimerization. We found that dimerization is dependent on both the LisH motif and the residues downstream of it, including the first few turns of the helix. We also have found that the coiled-coil does not contribute to dimerization, but instead is very labile and can adopt both supercoiled and helical conformations. These observations suggest that the presence of the LisH motif alone is not sufficient for high-affinity homodimerization and that other structural elements are likely to play an important role in this large family of proteins. The observed lability of the coiled-coil fragment in LIS1 is most likely of functional importance.


Assuntos
Motivos de Aminoácidos , Proteínas Associadas aos Microtúbulos/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , 1-Alquil-2-acetilglicerofosfocolina Esterase , Animais , Dimerização , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Desnaturação Proteica , Solventes , Termodinâmica
10.
Structure ; 12(2): 301-6, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14962390

RESUMO

The LcrV protein (V-antigen) is a multifunctional virulence factor in Yersinia pestis, the causative agent of plague. LcrV regulates the translocation of cytotoxic effector proteins from the bacterium into the cytosol of mammalian cells via a type III secretion system, possesses antihost activities of its own, and is also an active and passive mediator of resistance to disease. Although a crystal structure of this protein has been actively sought for better understanding of its role in pathogenesis, the wild-type LcrV was found to be recalcitrant to crystallization. We employed a surface entropy reduction mutagenesis strategy to obtain crystals of LcrV that diffract to 2.2 A and determined its structure. The refined model reveals a dumbbell-like molecule with a novel fold that includes an unexpected coiled-coil motif, and provides a detailed three-dimensional roadmap for exploring structure-function relationships in this essential virulence determinant.


Assuntos
Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Mutagênese , Yersinia pestis/química , Cristalografia por Raios X , Peste/etiologia , Proteínas Citotóxicas Formadoras de Poros , Yersiniose/etiologia
11.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 1983-91, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12454455

RESUMO

It is hypothesized that surface residues with high conformational entropy, specifically lysines and glutamates, impede protein crystallization. In a previous study using a model system of Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI), it was shown that mutating Lys residues to Ala results in enhanced crystallizability, particularly when clusters of lysines are targeted. It was also shown that one of these mutants formed crystals that yielded diffraction to 2.0 A, a significant improvement on the wild-type protein crystals. In the current paper, an analysis of the impact of surface mutations replacing Glu residues with Ala or Asp on the stability and crystallization properties of RhoGDI is presented. The Glu-->Ala (Asp) mutants are generally more likely to produce crystals of the protein than the wild-type and in one case the resulting crystals yielded a diffraction pattern to 1.2 A resolution. This occurs in spite of the fact that mutating surface Glu residues almost invariably affects the protein's stability, as illustrated by the reduced deltaG between folded and unfolded forms measured by isothermal equilibrium denaturation. The present study strongly supports the notion that rational surface mutagenesis can be an effective tool in overcoming problems stemming from the protein's recalcitrance to crystallization and may also yield dramatic improvements in crystal quality.


Assuntos
Alanina/química , Ácido Aspártico/química , Ácido Glutâmico/química , Inibidores de Dissociação do Nucleotídeo Guanina/química , Cristalização , Cristalografia por Raios X , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...