Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(11): 2770-2780, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508930

RESUMO

The COVID-19 pandemic has highlighted the need for mucosal vaccines as breakthrough infections, short-lived immune responses and emergence of new variants have challenged the efficacy provided by the first generation of vaccines against SARS-CoV-2 viruses. M2SR SARS-CoV-2, an M2-deleted single-replication influenza virus vector modified to encode the SARS-CoV-2 receptor binding domain, was evaluated following intranasal delivery in a hamster challenge model for protection against Wuhan SARS-CoV-2. An adjuvanted inactivated SARS-CoV-2 whole virus vaccine administered intramuscularly was also evaluated. The intranasal M2SR SARS-CoV-2 was more effective than the intramuscular adjuvanted inactivated whole virus vaccine in providing protection against SARS-CoV-2 challenge. M2SR SARS-CoV-2 elicited neutralizing serum antibodies against Wuhan and Omicron SARS-CoV-2 viruses in addition to cross-reactive mucosal antibodies. Furthermore, M2SR SARS-CoV-2 generated serum HAI and mucosal antibody responses against influenza similar to an H3N2 M2SR influenza vaccine. The intranasal dual influenza/COVID M2SR SARS-CoV-2 vaccine has the potential to provide protection against both influenza and COVID.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Cricetinae , Influenza Humana/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Pandemias/prevenção & controle , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Adjuvantes Imunológicos
2.
Vaccines (Basel) ; 11(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376452

RESUMO

Current SARS-CoV-2 vaccines provide protection for COVID-19-associated hospitalization and death, but remain inefficient at inhibiting initial infection and transmission. Despite updated booster formulations, breakthrough infections and reinfections from emerging SARS-CoV-2 variants are common. Intranasal vaccination to elicit mucosal immunity at the site of infection can improve the performance of respiratory virus vaccines. We developed SARS-CoV-2 M2SR, a dual SARS-CoV-2 and influenza vaccine candidate, employing our live intranasal M2-deficient single replication (M2SR) influenza vector expressing the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein of the prototype strain, first reported in January 2020. The intranasal vaccination of mice with this dual vaccine elicits both high serum IgG and mucosal IgA titers to RBD. Sera from inoculated mice show that vaccinated mice develop neutralizing SARS-CoV-2 antibody titers against the prototype and Delta virus strains, which are considered to be sufficient to protect against viral infection. Moreover, SARS-CoV-2 M2SR elicited cross-reactive serum and mucosal antibodies to the Omicron BA.4/BA.5 variant. The SARS-CoV-2 M2SR vaccine also maintained strong immune responses to influenza A with high titers of anti H3 serum IgG and hemagglutination inhibition (HAI) antibody titers corresponding to those seen from the control M2SR vector alone. With a proven safety record and robust immunological profile in humans that includes mucosal immunity, the M2SR influenza viral vector expressing key SARS-CoV-2 antigens could provide more efficient protection against influenza and SARS-CoV-2 variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...