Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 12(28): 3757-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27276517

RESUMO

A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

2.
Chem Commun (Camb) ; 50(57): 7628-31, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24893848

RESUMO

We present a new class of on-surface covalent reactions, formed between diborylene-3,4,9,10-tetraaminoperylene and trimesic acid on Cu(111), which gives rise to a porous 2D-'sponge'. This aperiodic network allowed the investigation of the dependence of electron confinement effects upon pore size, shape and even in partial confinement.

3.
Phys Chem Chem Phys ; 12(31): 8815-21, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20532367

RESUMO

A novel approach of identifying metal atoms within a metal-organic surface coordination network using scanning tunnelling microscopy (STM) is presented. The Cu adatoms coordinated in the porous surface network of 1,3,8,10-tetraazaperopyrene (TAPP) molecules on a Cu(111) surface give rise to a characteristic electronic resonance in STM experiments. Using density functional theory calculations, we provide strong evidence that this resonance is a fingerprint of the interaction between the molecules and the Cu adatoms. We also show that the bonding of the Cu adatoms to the organic exodentate ligands is characterised by both the mixing of the nitrogen lone-pair orbitals of TAPP with states on the Cu adatoms and the partial filling of the lowest unoccupied molecular orbital (LUMO) of the TAPP molecule. Furthermore, the key interactions determining the surface unit cell of the network are discussed.

4.
Chemistry ; 16(7): 2079-91, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20077537

RESUMO

The structural chemistry and reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111) under ultra-high-vacuum (UHV) conditions has been studied by a combination of experimental techniques (scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, XPS) and DFT calculations. Depending on the deposition conditions, TAPP forms three main assemblies, which result from initial submonolayer coverages based on different intermolecular interactions: a close-packed assembly similar to a projection of the bulk structure of TAPP, in which the molecules interact mainly through van der Waals (vDW) forces and weak hydrogen bonds; a porous copper surface coordination network; and covalently linked molecular chains. The Cu substrate is of crucial importance in determining the structures of the aggregates and available reaction channels on the surface, both in the formation of the porous network for which it provides the Cu atoms for surface metal coordination and in the covalent coupling of the TAPP molecules at elevated temperature. Apart from their role in the kinetics of surface transformations, the available metal adatoms may also profoundly influence the thermodynamics of transformations by coordination to the reaction product, as shown in this work for the case of the Cu-decorated covalent poly(TAPP-Cu) chains.

5.
Science ; 325(5938): 300-3, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19608913

RESUMO

The properties of crystalline solids can to a large extent be derived from the scale and dimensionality of periodic arrays of coupled quantum systems such as atoms and molecules. Periodic quantum confinement in two dimensions has been elusive on surfaces, mainly because of the challenge to produce regular nanopatterned structures that can trap electronic states. We report that the two-dimensional free electron gas of the Cu(111) surface state can be trapped within the pores of an organic nanoporous network, which can be regarded as a regular array of quantum dots. Moreover, a shallow dispersive electronic band structure is formed, which is indicative of electronic coupling between neighboring pore states.

6.
Chem Commun (Camb) ; (24): 3525-7, 2009 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19521595

RESUMO

A temperature-induced phase transition of a 2D H-bonded assembly, enabling quadruple H-bonding interactions, from a hexagonal porous network into a close-packed rhombic arrangement has been observed on Ag(111) by STM imaging.


Assuntos
Conformação Molecular , Ligação de Hidrogênio , Microscopia de Tunelamento , Modelos Moleculares , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...