Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36991991

RESUMO

In this work, we present power and quality measurements of four transmissions using different emission technologies in an indoor environment, specifically a corridor, at the frequency of 868 MHz under two non-line-of-sight (NLOS) conditions. A narrowband (NB) continuous wave (CW) signal has been transmitted, and its received power has been measured with a spectrum analyzer, LoRa and Zigbee signals have also been transmitted, and their Received Signal Strength Indicator (RSSI) and bit error rate (BER) have been measured using the transceivers themselves; finally, a 20 MHz bandwidth 5G QPSK signal has also been transmitted and their quality parameters, such as SS-RSRP, SS-RSRQ and SS-RINR, have been measured using a SA. Thereafter, two fitting models, the Close-in (CI) model and the Floating-Intercept (FI) model, were used to analyze the path loss. The results show that slopes below 2 for the NLOS-1 zone and above 3 for the NLOS-2 zone have been found. Moreover, the CI and FI model behave very similarly in the NLOS-1 zone, while in the NLOS-2 zone, the CI model has poor accuracy in contrast to the FI model, which achieves the best accuracy in both NLOS situations. From these models, the power predicted with the FI model has been correlated with the measured BER value, and power margins have been established for which LoRa and Zigbee would each reach a BER greater than 5%; likewise, -18 dB has been established for the SS-RSRQ of 5G transmission.

2.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808461

RESUMO

Power system configuration and performance are changing very quickly. Under the new paradigm of prosumers and energy communities, grids are increasingly influenced by microgeneration systems connected in both low and medium voltage. In addition, these facilities provide little or no information to distribution and/or transmission system operators, increasing power system management problems. Actually, information is a great asset to manage this new situation. The arrival of affordable and open Internet of Things (IoT) technologies is a remarkable opportunity to overcome these inconveniences allowing for the exchange of information about these plants. In this paper, we propose a monitoring solution applicable to photovoltaic self-consumption or any other microgeneration installation, covering the installations of the so-called 'prosumers' and aiming to provide a tool for local self-consumption monitoring. A detailed description of the proposed system at the hardware level is provided, and extended information on the communication characteristics and data packets is also included. Results of different field test campaigns carried out in real PV self-consumption installations connected to the grid are described and analyzed. It can be affirmed that the proposed solution provides outstanding results in reliability and accuracy, being a popular solution for those who cannot afford professional monitoring platforms.


Assuntos
Internet das Coisas , Comunicação , Sistemas Computacionais , Reprodutibilidade dos Testes , Tecnologia
3.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214398

RESUMO

Due to the relevant penetration of solar PV power plants, an accurate power generation forecasting of these installations is crucial to provide both reliability and stability of current grids. At the same time, PV monitoring requirements are more and more demanded by different agents to provide reliable information regarding performances, efficiencies, and possible predictive maintenance tasks. Under this framework, this paper proposes a methodology to evaluate different LoRa-based PV monitoring architectures and node layouts in terms of short-term solar power generation forecasting. A random forest model is proposed as forecasting method, simplifying the forecasting problem especially when the time series exhibits heteroscedasticity, nonstationarity, and multiple seasonal cycles. This approach provides a sensitive analysis of LoRa parameters in terms of node layout, loss of data, spreading factor and short time intervals to evaluate their influence on PV forecasting accuracy. A case example located in the southeast of Spain is included in the paper to evaluate the proposed analysis. This methodology is applicable to other locations, as well as different LoRa configurations, parameters, and networks structures; providing detailed analysis regarding PV monitoring performances and short-term PV generation forecasting discrepancies.


Assuntos
Energia Solar , Luz Solar , Previsões , Reprodutibilidade dos Testes , Tecnologia
4.
Sensors (Basel) ; 21(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070879

RESUMO

The current trend in vehicles is to integrate a wide number of antennae and sensors operating at a variety of frequencies for sensing and communications. The integration of these antennae and sensors in the vehicle platform is complex because of the way in which the antenna radiation patterns interact with the vehicle structure and other antennae/sensors. Consequently, there is a need to study the radiation pattern of each antenna or, alternatively, the currents induced on the surface of the vehicle to optimize the integration of multiple antennae. The novel concept of differential imaging represents one method by which it is possible to obtain the surface current distribution without introducing any perturbing probe. The aim of this study was to develop and confirm the assumptions that underpin differential imaging by means of full-wave electromagnetic simulation, thereby providing additional verification of the concept. The simulation environment and parameters were selected to replicate the conditions in which real measurements were taken in previous studies. The simulations were performed using Ansys HFSS simulation software. The results confirm that the approximations are valid, and the differential currents are representative of the induced surface currents generated by a monopole positioned on the top of a vehicle.

5.
Sensors (Basel) ; 20(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023093

RESUMO

The next generation of connected and autonomous vehicles will be equipped with high numbers of antennas operating in a wide frequency range for communications and environment sensing. The study of 3D spatial angular responses and the radiation patterns modified by vehicular structure will allow for better integration of the associated communication and sensing antennas. The use of near-field monostatic focusing, applied with frequency-dimension scale translation and differential imaging, offers a novel imaging application. The objective of this paper is to theoretically and experimentally study the method of obtaining currents produced by an antenna radiating on top of a vehicular platform using differential imaging. The experimental part of the study focuses on measuring a scaled target using an imaging system operating in a terahertz band-from 220 to 330 GHz-that matches a 5G frequency band according to frequency-dimension scale translation. The results show that the induced currents are properly estimated using this methodology, and that the influence of the bandwidth is assessed.

6.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168736

RESUMO

Millimeter-wave and terahertz frequencies offer unique characteristics to simultaneously obtain good spatial resolution and penetrability. In this paper, a robust near-field monostatic focusing technique is presented and successfully applied for the internal imaging of different penetrable geometries. These geometries and environments are related to the growing need to furnish new vehicles with radar-sensing devices that can visualize their surroundings in a clear and robust way. Sub-millimeter-wave radar sensing offers enhanced capabilities in providing information with a high level of accuracy and quality, even under adverse weather conditions. The aim of this paper was to research the capability of this radar system for imaging purposes from an analytical and experimental point of view. Two sets of measurements, using reference targets, were performed in the W band at 100 GHz (75 to 110 GHz) and terahertz band at 300 GHz (220 to 330 GHz). The results show spatial resolutions of millimeters in both the range (longitudinal) and the cross-range (transversal) dimensions for the two different imaging geometries in terms of the location of the transmitter and receiver (frontal or lateral views). The imaging quality in terms of spatial accuracy and target material parameter was investigated and optimized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...