Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 175171, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094648

RESUMO

Plastic pollution has become a global concern, affecting many species around the world. While well-documented for marine ecosystems, the impact of plastic pollution on terrestrial ecosystems is comparatively limited. In fact, only recently have some studies begun to explore the occurrence, pathways, and impacts of plastic in the atmosphere and on terrestrial species. Here, we assess the presence of synthetic material in nests of three swift species breeding in the Western Palearctic: the common swift (Apus apus), the pallid swift (Apus pallidus), and the alpine swift (Tachymarptis melba). Using data from 487 nests spanning 25 colonies and seven European countries, we show that 36.5 % of the examined nests contained anthropogenic materials, mainly plastic debris. Notably, Pallid swifts' nests, with 85 % of the total nests examined with plastic, rank among birds with the highest plastic content in nests. We also demonstrate that the probability of finding plastic in the nest increased substantially with the human footprint of the landscape. Last, we recorded four cases of swifts entangled in their own nest, a low proportion compared to other species studied previously. Our study provides compelling evidence that plastic pollution may also be considered a concern for other terrestrial species, particularly for birds with highly aerial lifestyles, such as other swifts. The correlation with the human footprint suggests that areas with higher human activity contribute more significantly. Moreover, the entanglement cases, although low, indicate a threat to bird health and welfare. To our knowledge, our study is the first to report a direct interaction between floating plastic debris in the atmosphere and any species. Understanding this interaction is key, not only due to the lack of research on the topic, but also because it highlights that plastic pollution is a multifaceted environmental issue affecting various ecosystem categories, and the broader implications of atmospheric plastic circulation on wildlife and ecosystems health.


Assuntos
Aves , Monitoramento Ambiental , Plásticos , Animais , Plásticos/análise , Comportamento de Nidação , Resíduos/análise , Poluentes Atmosféricos/análise , Ecossistema , Europa (Continente) , Poluição Ambiental/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos
2.
R Soc Open Sci ; 10(7): 230408, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476517

RESUMO

It is well recognized that COVID-19 lockdowns impacted human interactions with natural ecosystems. One example is recreational fishing, which, in developed countries, involves approximately 10% of people. Fishing licence sales and observations at angling locations suggest that recreational fishing effort increased substantially during lockdowns. However, the extent and duration of this increase remain largely unknown. We used four years (2018-2021) of high-resolution data from a personal fish-finder device to explore the impact of COVID-19 lockdowns on angling effort in four European countries. We show that relative device use and angling effort increased 1.2-3.8-fold during March-May 2020 and generally remained elevated even at the end of 2021. Fishing during the first lockdown also became more frequent on weekdays. Statistical models explained 50-70% of the variation, suggesting that device use and angling effort were relatively consistent and predictable through space and time. Our study demonstrates that recreational fishing behaviour can change substantially and rapidly in response to societal shifts, with profound ecological, human well-being and economic implications. We also show the potential of angler devices and smartphone applications for high-resolution fishing effort analysis and encourage more extensive science and industry collaborations to take advantage of this information.

3.
Oecologia ; 190(3): 689-702, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31203452

RESUMO

Increased levels of dissolved carbon dioxide (CO2) drive ocean acidification and have been predicted to increase the energy use of marine fishes via physiological and behavioural mechanisms. This notion is based on a theoretical framework suggesting that detrimental effects on energy use are caused by plasma acid-base disruption in response to hypercapnic acidosis, potentially in combination with a malfunction of the gamma aminobutyric acid type A (GABAA) receptors in the brain. However, the existing empirical evidence testing these effects primarily stems from studies that exposed fish to elevated CO2 for a few days and measured a small number of traits. We investigated a range of energetic traits in juvenile spiny chromis damselfish (Acanthochromis polyacanthus) over 3 months of acclimation to projected end-of-century CO2 levels (~ 1000 µatm). Somatic growth and otolith size and shape were unaffected by the CO2 treatment across 3 months of development in comparison with control fish (~ 420 µatm). Swimming activity during behavioural assays was initially higher in the elevated CO2 group, but this effect dissipated within ~ 25 min following handling. The transient higher activity of fish under elevated CO2 was not associated with a detectable difference in the rate of oxygen uptake nor was it mediated by GABAA neurotransmitter interference because treatment with a GABAA antagonist (gabazine) did not abolish the CO2 treatment effect. These findings contrast with several short-term studies by suggesting that end-of-century levels of CO2 may have negligible direct effects on the energetics of at least some species of fish.


Assuntos
Recifes de Corais , Água do Mar , Aclimatação , Animais , Dióxido de Carbono , Peixes , Concentração de Íons de Hidrogênio
4.
Curr Zool ; 65(2): 177-182, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30936906

RESUMO

The uropygial gland has been hypothesized to play a role in sexual signaling through a "make-up" function derived from the effects of secretions from the gland on the appearance of the plumage and bare parts of the body. Here we show that plumage brightness of dorsal feathers of individual barn swallows Hirundo rustica was greater in mated than in unmated individuals. In addition, plumage brightness increased with colony size. Furthermore, plumage brightness was positively correlated with the amount of wax in the uropygial gland, negatively correlated with time of sampling of uropygial wax (perhaps because more wax is present early in the morning after an entire night of wax production without any preening), and negatively correlated with the number of chewing lice that degrade the plumage. Experimentally preventing barn swallows from access to the uropygial gland reduced plumage brightness, showing a causal link between secretions from the uropygial gland and plumage brightness. These findings provide evidence consistent with a role of uropygial secretions in signaling plumage brightness.

5.
Behav Ecol Sociobiol ; 71(8): 108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28736477

RESUMO

ABSTRACT: Levels of dissolved carbon dioxide (CO2) projected to occur in the world's oceans in the near future have been reported to increase swimming activity and impair predator recognition in coral reef fishes. These behavioral alterations would be expected to have dramatic effects on survival and community dynamics in marine ecosystems in the future. To investigate the universality and replicability of these observations, we used juvenile spiny chromis damselfish (Acanthochromis polyacanthus) to examine the effects of long-term CO2 exposure on routine activity and the behavioral response to the chemical cues of a predator (Cephalopholis urodeta). Commencing at ~3-20 days post-hatch, juvenile damselfish were exposed to present-day CO2 levels (~420 µatm) or to levels forecasted for the year 2100 (~1000 µatm) for 3 months of their development. Thereafter, we assessed routine activity before and after injections of seawater (sham injection, control) or seawater-containing predator chemical cues. There was no effect of CO2 treatment on routine activity levels before or after the injections. All fish decreased their swimming activity following the predator cue injection but not following the sham injection, regardless of CO2 treatment. Our results corroborate findings from a growing number of studies reporting limited or no behavioral responses of fishes to elevated CO2. SIGNIFICANCE STATEMENT: Alarmingly, it has been reported that levels of dissolved carbon dioxide (CO2) forecasted for the year 2100 cause coral reef fishes to be attracted to the chemical cues of predators. However, most studies have exposed the fish to CO2 for very short periods before behavioral testing. Using long-term acclimation to elevated CO2 and automated tracking software, we found that fish exposed to elevated CO2 showed the same behavioral patterns as control fish exposed to present-day CO2 levels. Specifically, activity levels were the same between groups, and fish acclimated to elevated CO2 decreased their swimming activity to the same degree as control fish when presented with cues from a predator. These findings indicate that behavioral impacts of elevated CO2 levels are not universal in coral reef fishes.

6.
PLoS One ; 10(6): e0128860, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26035300

RESUMO

Global climate change is expected to have major effects on host-parasite dynamics, with potentially enormous consequences for entire ecosystems. To develop an accurate prognostic framework, theoretical models must be supported by empirical research. We investigated potential changes in host-parasite dynamics between a fish parasite, the eyefluke Diplostomum baeri, and an intermediate host, the European perch Perca fluviatilis, in a large-scale semi-enclosed area in the Baltic Sea, the Biotest Lake, which since 1980 receives heated water from a nuclear power plant. Two sample screenings, in two consecutive years, showed that fish from the warmer Biotest Lake were now less parasitized than fish from the Baltic Sea. These results are contrasting previous screenings performed six years after the temperature change, which showed the inverse situation. An experimental infection, by which perch from both populations were exposed to D. baeri from the Baltic Sea, revealed that perch from the Baltic Sea were successfully infected, while Biotest fish were not. These findings suggest that the elevated temperature may have resulted, among other outcomes, in an extremely rapid evolutionary change through which fish from the experimental Biotest Lake have gained resistance to the parasite. Our results confirm the need to account for both rapid evolutionary adaptation and biotic interactions in predictive models, and highlight the importance of empirical research in order to validate future projections.


Assuntos
Mudança Climática , Interações Hospedeiro-Parasita , Percas/parasitologia , Temperatura , Trematódeos/fisiologia , Animais , Evolução Biológica , Oceanos e Mares , Carga Parasitária , Percas/anatomia & histologia
7.
Ecol Evol ; 4(13): 2625-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077014

RESUMO

A standard approach to model how selection shapes phenotypic traits is the analysis of capture-recapture data relating trait variation to survival. Divergent selection, however, has never been analyzed by the capture-recapture approach. Most reported examples of differences between urban and nonurban animals reflect behavioral plasticity rather than divergent selection. The aim of this paper was to use a capture-recapture approach to test the hypothesis that divergent selection can also drive local adaptation in urban habitats. We focused on the size of the black breast stripe (i.e., tie width) of the great tit (Parus major), a sexual ornament used in mate choice. Urban great tits display smaller tie sizes than forest birds. Because tie size is mostly genetically determined, it could potentially respond to selection. We analyzed capture/recapture data of male great tits in Barcelona city (N = 171) and in a nearby (7 km) forest (N = 324) from 1992 to 2008 using MARK. When modelling recapture rate, we found it to be strongly influenced by tie width, so that both for urban and forest habitats, birds with smaller ties were more trap-shy and more cautious than their larger tied counterparts. When modelling survival, we found that survival prospects in forest great tits increased the larger their tie width (i.e., directional positive selection), but the reverse was found for urban birds, with individuals displaying smaller ties showing higher survival (i.e., directional negative selection). As melanin-based tie size seems to be related to personality, and both are heritable, results may be explained by cautious personalities being favored in urban environments. More importantly, our results show that divergent selection can be an important mechanism in local adaptation to urban habitats and that capture-recapture is a powerful tool to test it.

8.
Biol Lett ; 7(5): 668-9, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-21450725

RESUMO

Yellow, red or orange carotenoid-based colorations in male birds are often a signal to prospecting females about body condition, health status and ability to find food. However, this general 'ability to find food' has never been defined. Here we show that more brightly ornamented individuals may also be more efficient when foraging in novel situations. The results highlight the fact that evolution may have provided females tools to evaluate cognitive abilities of the males.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Resolução de Problemas , Animais , Cor , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA