Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896379

RESUMO

Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene (DMDHA), triptycene and 1,3,5-triphenylbenzene (135TPB) with dimethoxymethane (DMM). These materials have been characterized by FTIR, 13C NMR, WAXD, TGA, SEM, and CO2 uptake. Finally, different loadings of these POPs have been introduced into Matrimid, Pebax, and chitosan:polyvinyl alcohol blends as polymeric matrices to prepare MMMs. The CO2/CH4 separation performance of these MMMs has been evaluated by single and mixed gas permeation experiments at 4 bar and room temperature. The effect of the porosity of the porous fillers on the membrane separation behavior and the compatibility between them and the different polymer matrices on membrane design and fabrication has been studied by Maxwell model equations as a function of the gas permeability of the pure polymers, porosity, and loading of the fillers in the MMMs. Although the gas transport properties showed an increasing deviation from ideal Maxwell equation prediction with increasing porosity of the POP fillers and increasing hydrophilicity of the polymer matrices, the behavior of biopolymer-based CS:PVA MMMs approached that of Pebax-based MMMs, giving scope to not only new filler materials but also sustainable polymer choices to find a place in membrane technology.

2.
Polymers (Basel) ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987115

RESUMO

An optimized synthesis of the monomer 2,2'3,3'-biphenyltetracarboxylic dianhydride, iBPDA, was performed to obtain high molecular weight polymers. This monomer has a contorted structure that produces a non-linear shape, hindering the packing of the polymer chain. Aromatic polyimides of high molecular weight were obtained by reaction with the commercial diamine 2,2-bis(4-aminophenyl) hexafluoropropane, 6FpDA, which is a very common monomer in gas separation applications. This diamine has hexafluoroisopropylidine groups which introduce rigidity in the chains, hindering efficient packing. The thermal treatment of the polymers processed as dense membranes had two targets: on the one hand, to achieve the complete elimination of the solvent used, which could remain occluded in the polymeric matrix, and on the other hand to ensure the complete cycloimidization of the polymer. A thermal treatment exceeding the glass transition temperature was performed to ensure the maximum degree of imidization at 350 °C. The good mechanical properties of these materials allow for their use in high-pressure gas purification applications. Moreover, models of the polymers exhibited an Arrhenius-like behavior characteristic of secondary relaxations, normally associated with local motions of the molecular chain. The gas productivity of these membranes was high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...