Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 15(4): R57, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24708865

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are established regulators of development, cell identity and disease. Although nearly two thousand human miRNA genes are known and new ones are continuously discovered, no attempt has been made to gauge the total miRNA content of the human genome. RESULTS: Employing an innovative computational method on massively pooled small RNA sequencing data, we report 2,469 novel human miRNA candidates of which 1,098 are validated by in-house and published experiments. Almost 300 candidates are robustly expressed in a neuronal cell system and are regulated during differentiation or when biogenesis factors Dicer, Drosha, DGCR8 or Ago2 are silenced. To improve expression profiling, we devised a quantitative miRNA capture system. In a kidney cell system, 400 candidates interact with DGCR8 at transcript positions that suggest miRNA hairpin recognition, and 1,000 of the new miRNA candidates interact with Ago1 or Ago2, indicating that they are directly bound by miRNA effector proteins. From kidney cell CLASH experiments, in which miRNA-target pairs are ligated and sequenced, we observe hundreds of interactions between novel miRNAs and mRNA targets. The novel miRNA candidates are specifically but lowly expressed, raising the possibility that not all may be functional. Interestingly, the majority are evolutionarily young and overrepresented in the human brain. CONCLUSIONS: In summary, we present evidence that the complement of human miRNA genes is substantially larger than anticipated, and that more are likely to be discovered in the future as more tissues and experimental conditions are sequenced to greater depth.


Assuntos
Genoma Humano , MicroRNAs/genética , Proteínas Argonautas/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Células MCF-7 , MicroRNAs/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo
2.
Neurobiol Dis ; 65: 43-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24418349

RESUMO

Male premutation carriers presenting between 55 and 200 CGG repeats in the Fragile-X-associated (FMR1) gene are at risk of developing Fragile X Tremor/Ataxia Syndrome (FXTAS), and females undergo Premature Ovarian Failure (POF1). Here, we have evaluated gene expression profiles from blood in male FMR1 premutation carriers and detected a strong deregulation of genes enriched in FXTAS relevant biological pathways, including inflammation, neuronal homeostasis and viability. Gene expression profiling distinguished between control individuals, carriers with FXTAS and carriers without FXTAS, with levels of expanded FMR1 mRNA being increased in FXTAS patients. In vitro studies in a neuronal cell model indicate that expression levels of expanded FMR1 5'-UTR are relevant in modulating the transcriptome. Thus, perturbations of the transcriptome may be an interplay between the CGG expansion size and FMR1 expression levels. Several deregulated genes (DFFA, BCL2L11, BCL2L1, APP, SOD1, RNF10, HDAC5, KCNC3, ATXN7, ATXN3 and EAP1) were validated in brain samples of a FXTAS mouse model. Downregulation of EAP1, a gene involved in the female reproductive system physiology, was confirmed in female carriers. Decreased levels were detected in female carriers with POF1 compared to those without POF1, suggesting that EAP1 levels contribute to ovarian insufficiency. In summary, gene expression profiling in blood has uncovered mechanisms that may underlie different pathological aspects of the premutation. A better understanding of the transcriptome dynamics in relation with expanded FMR1 mRNA expression levels and CGG expansion size may provide mechanistic insights into the disease process and a more accurate FXTAS diagnosis to the myriad of phenotypes associated with the premutation.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica/genética , Infertilidade/genética , Doenças Neurodegenerativas/sangue , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Análise em Microsséries , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Neuroblastoma/patologia , Doenças Neurodegenerativas/genética , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Securina/genética , Securina/metabolismo
3.
PLoS Genet ; 8(2): e1002481, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383888

RESUMO

Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.


Assuntos
Doença de Huntington/etiologia , Proteínas do Tecido Nervoso/genética , RNA Mensageiro , Éxons , Inativação Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...