Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 12(1): 127, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35965312

RESUMO

BACKGROUND: Different pathologies, affecting the skeletal system, were reported to display altered bone and/or cartilage innervation profiles leading to the deregulation of the tissue homeostasis. The patterning of peripheral innervation is achieved through the tissue-specific expression of attractive or repulsive axonal guidance cues in specific space and time frames. During the last decade, emerging findings attributed to the extracellular vesicles (EV) trading a central role in peripheral tissue innervation. However, to date, the contribution of EV in controlling bone innervation is totally unknown. RESULTS: Here we show that sensory neurons outgrowth induced by the bone resorbing cells-osteoclasts-is promoted by osteoclast-derived EV. The EV induced axonal growth is achieved by targeting epidermal growth factor receptor (EGFR)/ErbB2 signaling/protein kinase C phosphorylation in sensory neurons. In addition, our data also indicate that osteoclasts promote sensory neurons electrophysiological activity reflecting a possible pathway in nerve sensitization in the bone microenvironment, however this effect is EV independent. CONCLUSIONS: Overall, these results identify a new mechanism of sensory bone innervation regulation and shed the light on the role of osteoclast-derived EV in shaping/guiding bone sensory innervation. These findings provide opportunities for exploitation of osteoclast-derived EV based strategies to prevent and/or mitigate pathological uncontrolled bone innervation.

2.
ACS Nano ; 16(4): 5731-5742, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404570

RESUMO

Methods for patterning neurons in vitro have gradually improved and are used to investigate questions that are difficult to address in or ex vivo. Though these techniques guide axons between groups of neurons, multiscale control of neuronal connectivity, from circuits to synapses, is yet to be achieved in vitro. As studying neuronal circuits with synaptic resolution in vivo poses significant challenges, we present an in vitro alternative to validate biophysical and computational models. In this work we use a combination of electron beam lithography and photolithography to create polydimethylsiloxane (PDMS) structures with features ranging from 150 nm to a few millimeters. Leveraging the difference between average axon and dendritic spine diameters, we restrict axon growth while allowing spines to pass through nanochannels to guide synapse formation between small groups of neurons (i.e., nodes). We show this technique can be used to generate large numbers of isolated feed-forward circuits where connections between nodes are restricted to regions connected by nanochannels. Using a genetically encoded calcium indicator in combination with fluorescently tagged postsynaptic protein, PSD-95, we demonstrate functional synapses can form in this region.


Assuntos
Neurônios , Sinapses , Sinapses/fisiologia , Axônios , Neurogênese
3.
Lab Chip ; 22(7): 1386-1403, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35253810

RESUMO

Bottom-up neuroscience, which consists of building and studying controlled networks of neurons in vitro, is a promising method to investigate information processing at the neuronal level. However, in vitro studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with well-defined connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs), suggesting the formation of functional connections between the neurons of a circuit. Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Fenômenos Eletrofisiológicos , Eletrofisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microeletrodos , Neurônios/fisiologia
4.
Elife ; 92020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32195665

RESUMO

Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.


Assuntos
Actomiosina/fisiologia , Axônios/fisiologia , Condução Nervosa/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Ratos
5.
Sci Rep ; 9(1): 5777, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962522

RESUMO

Understanding neuronal communication is fundamental in neuroscience, but there are few methodologies offering detailed analysis for well-controlled conditions. By interfacing microElectrode arrays with microFluidics (µEF devices), it is possible to compartmentalize neuronal cultures with a specified alignment of axons and microelectrodes. This setup allows the extracellular recording of spike propagation with a high signal-to-noise ratio over the course of several weeks. Addressing these µEF devices, we developed an advanced yet easy-to-use publically available computational tool, µSpikeHunter, which provides a detailed quantification of several communication-related properties such as propagation velocity, conduction failure, spike timings, and coding mechanisms. The combination of µEF devices and µSpikeHunter can be used in the context of standard neuronal cultures or with co-culture configurations where, for example, communication between sensory neurons and other cell types is monitored and assessed. The ability to analyze axonal signals (in a user-friendly, time-efficient, high-throughput manner) opens the door to new approaches in studies of peripheral innervation, neural coding, and neuroregeneration, among many others. We demonstrate the use of µSpikeHunter in dorsal root ganglion neurons where we analyze the presence of both anterograde and retrograde signals in µEF devices. A fully functional version of µSpikeHunter is publically available for download from https://github.com/uSpikeHunter .

7.
J Vis Exp ; (142)2018 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-30582587

RESUMO

Microelectrode arrays (MEAs) are widely used to study neuronal function in vitro. These devices allow concurrent non-invasive recording/stimulation of electrophysiological activity for long periods. However, the property of sensing signals from all sources around every microelectrode can become unfavorable when trying to understand communication and signal propagation in neuronal circuits. In a neuronal network, several neurons can be simultaneously activated and can generate overlapping action potentials, making it difficult to discriminate and track signal propagation. Considering this limitation, we have established an in vitro setup focused on assessing electrophysiological communication, which is able to isolate and amplify axonal signals with high spatial and temporal resolution. By interfacing microfluidic devices and MEAs, we are able to compartmentalize neuronal cultures with a well-controlled alignment of the axons and microelectrodes. This setup allows recordings of spike propagation with a high signal-to-noise ratio over the course of several weeks. Combined with specialized data analysis algorithms, it provides detailed quantification of several communication related properties such as propagation velocity, conduction failure, firing rate, anterograde spikes, and coding mechanisms. This protocol demonstrates how to create a compartmentalized neuronal culture setup over substrate-integrated MEAs, how to culture neurons in this setup, and how to successfully record, analyze and interpret the results from such experiments. Here, we show how the established setup simplifies the understanding of neuronal communication and axonal signal propagation. These platforms pave the way for new in vitro models with engineered and controllable neuronal network topographies. They can be used in the context of homogeneous neuronal cultures, or with co-culture configurations where, for example, communication between sensory neurons and other cell types is monitored and assessed. This setup provides very interesting conditions to study, for example, neurodevelopment, neuronal circuits, information coding, neurodegeneration and neuroregeneration approaches.


Assuntos
Axônios/fisiologia , Microeletrodos/normas , Microfluídica/métodos , Neurônios/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...