Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 35: 106929, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33763509

RESUMO

Electronic and free energy data of density functional theory calculated optimized geometries of the reactants, transition state of the oxidative addition reaction and different reaction products of the [Rh(RCOCHCOCF3)(CO)(PPh3)] + CH3I reactions (R = C4H3S, C4H3S-C4H2S and C4H3S-C4H2S-C4H2S) are presented to illustrate the influence of the amount of thiophene groups, the implicit solvent and dispersion correction on the calculated energies. All calculations were done with the B3LYP functional, in gas as well as in solvent phase, with and without dispersion correction. The data can save computational chemists time when choosing an appropriate method to calculate reaction energies of oxidative addition reactions. Detailed knowledge of energies involved in the oxidative addition reaction of methyl iodide to rhodium complexes have an important implication in catalysis, for example the Monsanto process where methanol is converted to acetic acid catalysed by a rhodium complex. For more insight in the reported data, see the related research article "Synthesis, characterization, electrochemistry, DFT and kinetic study of the oligothiophene-containing complex [Rh((C4H3S-C4H2S)COCHCOCF3)(CO)(PPh3)]", published in Polyhedron [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...