Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 487: 153467, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842454

RESUMO

Parkinson's disease is a severe neurodegenerative disease. Several environmental contaminants such as pesticides have been suspected to favor the appearance of this pathology. The protein DJ-1 (or Park7) protects against the development of Parkinson's disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects could be one of the various biological effects of these pesticides that may explain their involvement in the development of Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Praguicidas , Humanos , Doença de Parkinson/patologia , Praguicidas/toxicidade , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Tiram
2.
Biomolecules ; 13(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671412

RESUMO

DJ-1 (also called PARK7) is a ubiquitously expressed protein involved in the etiology of Parkinson disease and cancers. At least one of its three cysteine residues is functionally essential, and its oxidation state determines the specific function of the enzyme. DJ-1 was recently reported to be persulfidated in mammalian cell lines, but the implications of this post-translational modification have not yet been analyzed. Here, we report that recombinant DJ-1 is reversibly persulfidated at cysteine 106 by reaction with various sulfane donors and subsequently inhibited. Strikingly, this reaction is orders of magnitude faster than C106 oxidation by H2O2, and persulfidated DJ-1 behaves differently than sulfinylated DJ-1. Both these PTMs most likely play a dedicated role in DJ-1 signaling or protective pathways.


Assuntos
Peróxido de Hidrogênio , Doença de Parkinson , Animais , Humanos , Cisteína/metabolismo , Peróxido de Hidrogênio/farmacologia , Mamíferos/metabolismo , Proteínas Oncogênicas/metabolismo , Oxirredução , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo
3.
Biochem Biophys Res Commun ; 503(2): 703-709, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29932913

RESUMO

We reported recently that the Parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO and YajL function as deglycases that repair proteins and nucleotides from endogeneous glycation by glyoxal and methylglyoxal, two reactive by-products of glucose metabolism responsible for up to 60% of glycation damage. Here, we show that DJ-1, deglycase 1 and deglycase 2 repair glyoxal- and methylglyoxal-glycated substrates, whereas deglycase 3 principally repairs glyoxal-glycated substrates. Moreover, deglycase 1 and 2 are overexpressed in stationary phase, whereas deglycase 3 is steadily expressed throughout bacterial growth. Finally, deglycase mutants overexpress glyoxalases, aldoketoreductases, glutathione-S-transferase and efflux pumps to alleviate carbonyl stress. In the discussion, we present an overview of the multiple functions of DJ-1 proteins. Our thourough work on deglycases provides compelling evidence that their previously reported glyoxalase III activity merely reflects their deglycase activity. Moreover, for their deglycase activity the Maillard deglycases likely recruit: i) their chaperone activity to interact with glycated proteins, ii) glyoxalase 1 activity to catalyze the rearrangement of Maillard products (aminocarbinols and hemithioacetals) into amides and thioesters, respectively, iii) their protease activity to cleave amide bonds of glycated arginine, lysine and guanine, and iv) glyoxalase 2 activity to cleave thioester bonds of glycated cysteine. Finally, because glycation affects many cellular processes, the discovery of the Maillard deglycases, awaited since 1912, likely constitutes a major advance for medical research, including ageing, cancer, atherosclerosis, neurodegenerative, post-diabetic, renal and autoimmune diseases.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteínas Ribossômicas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Glioxal/metabolismo , Humanos , Aldeído Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...