Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Infect Dis Poverty ; 10(1): 135, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930459

RESUMO

BACKGROUND: Long-lasting insecticide nets (LLINs) are a core malaria intervention. LLINs should retain efficacy against mosquito vectors for a minimum of three years. Efficacy and durability of Olyset® Plus, a permethrin and piperonyl butoxide (PBO) treated LLIN, was evaluated versus permethrin treated Olyset® Net. In the absence of WHO guidelines of how to evaluate PBO nets, and considering the manufacturer's product claim, Olyset® Plus was evaluated as a pyrethroid LLIN. METHODS: This was a household randomized controlled trial in a malaria endemic rice cultivation zone of Kirinyaga County, Kenya between 2014 and 2017. Cone bioassays and tunnel tests were done against Anopheles gambiae Kisumu. The chemical content, fabric integrity and LLIN survivorship were monitored. Comparisons between nets were tested for significance using the Chi-square test. Exact binomial distribution with 95% confidence intervals (95% CI) was used for percentages. The WHO efficacy criteria used were ≥ 95% knockdown and/or ≥ 80% mortality rate in cone bioassays and ≥ 80% mortality and/or ≥ 90% blood-feeding inhibition in tunnel tests. RESULTS: At 36 months, Olyset® Plus lost 52% permethrin and 87% PBO content; Olyset® Net lost 24% permethrin. Over 80% of Olyset® Plus and Olyset® Net passed the WHO efficacy criteria for LLINs up to 18 and 12 months, respectively. At month 36, 91.2% Olyset® Plus and 86.4% Olyset® Net survived, while 72% and 63% developed at least one hole. The proportionate Hole Index (pHI) values representing nets in good, serviceable and torn condition were 49.6%, 27.1% and 23.2%, respectively for Olyset® Plus, and 44.9%, 32.8% and 22.2%, respectively for Olyset® Net but were not significantly different. CONCLUSIONS: Olyset® Plus retained efficacy above or close to the WHO efficacy criteria for about 2 years than Olyset® Net (1-1.5 years). Both nets did not meet the 3-year WHO efficacy criteria, and showed little attrition, comparable physical durability and survivorship, with 50% of Olyset® Plus having good and serviceable condition after 3 years. Better community education on appropriate use and upkeep of LLINs is essential to ensure effectiveness of LLIN based malaria interventions.


Assuntos
Inseticidas , Permetrina , Quênia , Butóxido de Piperonila/farmacologia
2.
J Parasitol Res ; 2020: 3560310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411419

RESUMO

INTRODUCTION: Knockdown resistance (kdr) is strongly linked to pyrethroid insecticide resistance in Anopheles gambiae in Africa, which may have vital significance to the current increased use of pyrethroid-treated bed net programmes. The study is aimed at determining species composition, levels of insecticide resistance, and knockdown patterns in Anopheles gambiae sensu lato in areas with and areas without insecticide resistance in Teso North and Teso South subcounties, Western Kenya. MATERIALS AND METHODS: For WHO vulnerability tests, mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes (4944 at 100 mosquitoes per insecticide) which were exposed to 0.75% permethrin, 0.05% deltamethrin, and 0.1% bendiocarb using the WHO tube assay method. Species identification and kdr East gene PCRs were also performed on randomly selected mosquitoes from the collections; including adult mosquitoes (3448) sampled using standard collection methods. RESULTS: Anopheles gambiae sensu stricto were the majority in terms of species composition at 78.9%. Bendiocarb caused 100% mortality while deltamethrin had higher insecticidal effects (77%) on female mosquitoes than permethrin (71%). Susceptible Kengatunyi cluster had higher proportion of An. arabiensis (20.9%) than resistant Rwatama (10.7%). Kengatunyi mosquitoes exposed to deltamethrin had the highest KDT50 R of 8.2. Both Anopheles gambiae sensu stricto and Anopheles arabiensis had equal S allelic frequency of 0.84. Indoor resting mosquitoes had 100% mortality rate after 24 h since exposure. Overall SS genotypic frequency in Teso North and Teso South subcounties was 79.4% against 13.7% homozygous LL genotype and 6.9% heterozygous LS genotype. There was a significant difference (ρ < 0.05) in S allele frequencies between Kengatunyi (0.61) and Rwatama (0.95). Mosquito samples collected in 2013 had the highest S allelic frequency of 0.87. Discussion. Most likely, the higher the selection pressure exerted indoors by insecticidal nets, the higher were the resistance alleles. Use of pyrethroid impregnated nets and agrochemicals may have caused female mosquitoes to select for pyrethroid resistance. Different modes of action and chemical properties in different types of pyrethroids aggravated by a variety of edaphic and climatic factors may have caused different levels of susceptibility in both indoor and outdoor vectors to pyrethroids and carbamate. Species composition and populations in each collection method may have been influenced by insecticide resistance capacity in different species. Conclusions and Recommendations. Both phenotypic and genotypic insecticide resistance levels have been confirmed in Teso North and Teso South subcounties in Western Kenya. Insecticide resistance management practices in Kenya should be fast tracked and harmonized with agricultural sector agrochemical-based activities and legislation, and possibly switch to carbamate use in order to ease selection pressure on pyrethroids which are useable in insecticidal nets and indoor residual spray due to their low human toxicity. The implication of such high resistance levels in mosquitoes collected in Teso subcounties is that resistance is likely to persist and or even increase if monomolecules of permethrin and deltamethrin or both continue to be used in all net- and nonnet-based mosquito control purposes. Usage of mutually reinforcing piperonyl butoxide (PBO) that prohibits particular enzymes vital in metabolic activities inside mosquito systems and has been integrated into pyrethroid-LLINs to create pyrethroid-PBO nets is an extremely viable option.

3.
J Parasitol Res ; 2020: 9423682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328298

RESUMO

INTRODUCTION: Behavioural resistance to insecticides restrains the efficacy of vector control tools against mosquito-transmitted diseases. The current study is aimed at determining the impact of insecticide resistance on major malaria vectors' biting, feeding, and resting behaviour in areas with and areas without insecticide resistance in Teso North and Teso South, Busia County, Western Kenya. METHODS: Mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes [4944] which were exposed to 0.75% permethrin and 0.05% deltamethrin using World Health Organization tube assay method. Blood meal, species identification, and kdr Eastgene PCRs were also performed on adult mosquitoes sampled using mosquito collection methods [3448]. Biting, feeding, resting, and exiting behaviours of field-collected mosquitoes from five selected clusters were analysed. RESULTS: The lowest Kdr genotypic frequency (SS) proportion was found in female Anophelines collected in Kengatunyi at 58% while Rwatama had the highest genotypic frequency at 93%, thus susceptible and resistant clusters, respectively. The peak hour for mosquito seeking a human bite was between 0300 and 0400 hrs in the resistant cluster and 0400-0500 hrs in the susceptible cluster. The heterozygous mosquitoes maintained the known 2100-2200 hrs peak hour. There was a higher proportion of homozygous susceptible vectors (86.4%) seeking humans indoor than outdoor bitters (78.3%). Mosquito blood meals of human origin were 60% and 87% in susceptible Kengatunyi and resistant Rwatama cluster, respectively. There was significant difference between homozygous-resistant vectors feeding on human blood compared to homozygous susceptible mosquitoes (p ≤ 0.05). The proportion of bovine blood was highest in the susceptible cluster. A higher proportion of homozygous-resistant anophelines were feeding and resting indoors. No heterozygous mosquito was found resting indoor while 4.2% of the mosquitoes were caught while exiting the house through the window. Discussion. A shift in resistant Anopheles gambiae sl highest peak hour of aggressiveness from 2100-2200 hrs to 0300-0400 hrs is a key change in its biting pattern. Due to the development of resistance, mosquitoes no longer have to compete against the time the human host enters into the formerly lethal chemical and or physical barrier in the form of long-lasting insecticide-treated net. No heterozygous LS mosquito rested indoors possibly due to disadvantages of heterozygosity which could have increased their fitness costs as well as energy costs in the presence of the insecticidal agents in the treated nets. Conclusions and recommendations. Out of bed biting by female mosquitoes and partial susceptibility may contribute to residual malaria transmission. Insecticide-resistant vectors have become more endophagic and anthropophillic. Hence, insecticidal nets, zooprophylaxis, and novel repellents are still useful chemical, biological, and physical barriers against human blood questing female mosquitoes. Further studies should be done on genetic changes in mosquitoes and their effects on changing mosquito behaviour.

4.
Acta Trop ; 185: 98-106, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29709631

RESUMO

Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, ß-pinene, ß-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources.


Assuntos
Anopheles/fisiologia , Mamíferos , Mosquitos Vetores/fisiologia , Odorantes , Feromônios/farmacologia , Plantas , Monoterpenos Acíclicos , Aldeídos/farmacologia , Alcenos/farmacologia , Animais , Anopheles/efeitos dos fármacos , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/farmacologia , Cicloexanóis/farmacologia , Cicloexenos/farmacologia , Feminino , Limoneno , Malária/transmissão , Monoterpenos/farmacologia , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Terpenos/farmacologia , Compostos de Tritil/farmacologia
5.
Lancet Infect Dis ; 18(6): 640-649, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29650424

RESUMO

BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Assuntos
Culicidae , Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , África Subsaariana/epidemiologia , Estudos de Coortes , Culicidae/efeitos dos fármacos , Índia/epidemiologia , Resistência a Inseticidas , Internacionalidade , Malária/epidemiologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Estudos Prospectivos , Piretrinas/farmacologia , Organização Mundial da Saúde
6.
Parasit Vectors ; 10(1): 429, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927428

RESUMO

BACKGROUND: Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS: Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS: Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS: The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Animais , Anopheles/genética , Carbamatos/farmacologia , Geografia , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/genética , Mutação , Organofosfatos/farmacologia , Piretrinas/farmacologia
7.
Emerg Infect Dis ; 23(5): 758-764, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28418293

RESUMO

Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9-2.5) infections/person-year and 2.8 (95% CI 2.5-3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42-0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35-0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistance.


Assuntos
Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Animais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Humanos , Incidência , Lactente , Inseticidas/farmacologia , Quênia/epidemiologia , Malária/parasitologia , Malária/transmissão , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Vigilância em Saúde Pública
8.
BMC Infect Dis ; 16: 477, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600526

RESUMO

BACKGROUND: Shigellosis is the major cause of bloody diarrhoea worldwide and is endemic in most developing countries. In Kenya, bloody diarrhoea is reported weekly as part of priority diseases under Integrated Disease Surveillance and Response System (IDSR) in the Ministry of Health. METHODS: We conducted a case control study with 805 participants (284 cases and 521 controls) between January and December 2012 in Kilifi and Nairobi Counties. Kilifi County is largely a rural population whereas Nairobi County is largely urban. A case was defined as a person of any age who presented to outpatient clinic with acute diarrhoea with visible blood in the stool in six selected health facilities in the two counties within the study period. A control was defined as a healthy person of similar age group and sex with the case and lived in the neighbourhood of the case. RESULTS: The main presenting clinical features for bloody diarrhoea cases were; abdominal pain (69 %), mucous in stool (61 %), abdominal discomfort (54 %) and anorexia (50 %). Pathogen isolation rate was 40.5 % with bacterial and protozoal pathogens accounting for 28.2 % and 12.3 % respectively. Shigella was the most prevalent bacterial pathogen isolated in 23.6 % of the cases while Entamoeba histolytica was the most prevalent protozoal pathogen isolated in 10.2 % of the cases. On binary logistic regression, three variables were found to be independently and significantly associated with acute bloody diarrhoea at 5 % significance level; storage of drinking water separate from water for other use (OR = 0.41, 95 % CI 0.20-0.87, p = 0.021), washing hands after last defecation (OR = 0.24, 95 % CI 0.08-.076, p = 0.015) and presence of coliforms in main source water (OR = 2.56, CI 1.21-5.4, p = 0.014). Rainfall and temperature had strong positive correlation with bloody diarrhoea. CONCLUSION: The main etiologic agents for bloody diarrhoea were Shigella and E. histolytica. Good personal hygiene practices such as washing hands after defecation and storing drinking water separate from water for other use were found to be the key protective factors for the disease while presence of coliform in main water source was found to be a risk factor. Implementation of water, sanitation and hygiene (WASH) interventions is therefore key in prevention and control of bloody diarrhoea.


Assuntos
Diarreia/epidemiologia , Disenteria Bacilar/epidemiologia , Infecções por Enterobacteriaceae/epidemiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Diarreia/microbiologia , Disenteria Bacilar/microbiologia , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , População Rural , Saneamento , Shigella/isolamento & purificação , Adulto Jovem
9.
Malar J ; 14: 282, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194648

RESUMO

BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.


Assuntos
Culicidae/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Malária/epidemiologia , Malária/prevenção & controle , África Subsaariana/epidemiologia , Animais , Pré-Escolar , Feminino , Humanos , Índia/epidemiologia , Lactente , Recém-Nascido , Inseticidas/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Prevalência
10.
Parasit Vectors ; 7: 310, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24996418

RESUMO

BACKGROUND: Increasing pyrethroid resistance in malaria vectors has been reported in western Kenya where long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the mainstays of vector control. To ensure the sustainability of insecticide-based malaria vector control, monitoring programs need to be implemented. This study was designed to investigate the extent and distribution of pyrethroid resistance in 4 Districts of western Kenya (Nyando, Rachuonyo, Bondo and Teso). All four Districts have received LLINs while Nyando and Rachuonyo Districts have had IRS campaigns for 3-5 years using pyrethroids. This study is part of a programme aimed at determining the impact of insecticide resistance on malaria epidemiology. METHODS: Three day old adult mosquitoes from larval samples collected in the field, were used for bioassays using the WHO tube bioassay, and mortality recorded 24 hours post exposure. Resistance level was assigned based on the 2013 WHO guidelines where populations with <90% mortality were considered resistant. Once exposed, samples were identified to species using PCR. RESULTS: An. arabiensis comprised at least 94% of all An. gambiae s.l. in Bondo, Rachuonyo and Nyando. Teso was a marked contrast case with 77% of all samples being An. gambiae s.s. Mortality to insecticides varied widely between clusters even in one District with mortality to deltamethrin ranging from 45-100%, while to permethrin the range was 30-100%. Mortality to deltamethrin in Teso District was < 90% in 4 of 6 clusters tested in An arabiensis and <90% in An. gambiae s.s in 5 of 6 clusters tested. To permethrin, mortality ranged between 5.9-95%, with <90% mortality in 9 of 13 and 8 of 13 in An. arabiensis and An. gambiae s.s. respectively. Cluster specific mortality of An. arabiensis between permethin and deltamethrin were not correlated (Z = 2.9505, P = 0.2483). CONCLUSION: High levels of pyrethroid resistance were observed in western Kenya. This resistance does not seem to be associated with either species or location. Insecticide resistance can vary within small geographical areas and such heterogeneity may make it possible to evaluate the impact of resistance on malaria and mosquito parameters within similar eco-epidemiological zones.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Malária/transmissão , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia , Animais , Inseticidas/farmacologia , Quênia/epidemiologia , Larva/efeitos dos fármacos , Malária/epidemiologia
11.
Malar J ; 7: 20, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18218148

RESUMO

BACKGROUND: As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. METHODS: A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. RESULTS: The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6-37.6%; p = 0.04). CONCLUSION: This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience.


Assuntos
Pesquisa sobre Serviços de Saúde , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Anopheles/microbiologia , Bacillus thuringiensis/fisiologia , Ecossistema , Eficiência Organizacional , Humanos , Larva/microbiologia , Malária/transmissão , Controle Biológico de Vetores/métodos , Tanzânia
12.
Malar J ; 6: 48, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17456231

RESUMO

BACKGROUND: Capacity strengthening of rural communities, and the various actors that support them, is needed to enable them to lead their own malaria control programmes. Here the existing capacity of a rural community in western Kenya was evaluated in preparation for a larger intervention. METHODS: Focus group discussions and semi-structured individual interviews were carried out in 1,451 households to determine (1) demographics of respondent and household; (2) socio-economic status of the household; (3) knowledge and beliefs about malaria (symptoms, prevention methods, mosquito life cycle); (4) typical practices used for malaria prevention; (5) the treatment-seeking behaviour and household expenditure for malaria treatment; and (6) the willingness to prepare and implement community-based vector control. RESULTS: Malaria was considered a major threat to life but relevant knowledge was a chimera of scientific knowledge and traditional beliefs, which combined with socio-economic circumstances, leads to ineffective malaria prevention. The actual malaria prevention behaviour practiced by community members differed significantly from methods known to the respondents. Beside bednet use, the major interventions implemented were bush clearing and various hygienic measures, even though these are ineffective for malaria prevention. Encouragingly, most respondents believed malaria could be controlled and were willing to contribute to a community-based malaria control program but felt they needed outside assistance. CONCLUSION: Culturally sensitive but evidence-based education interventions, utilizing participatory tools, are urgently required which consider traditional beliefs and enable understanding of causal connections between mosquito ecology, parasite transmission and the diagnosis, treatment and prevention of disease. Community-based organizations and schools need to be equipped with knowledge through partnerships with national and international research and tertiary education institutions so that evidence-based research can be applied at the grassroots level.


Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Malária/prevenção & controle , Saúde da População Rural/estatística & dados numéricos , População Rural , Demografia , Grupos Focais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Entrevistas como Assunto , Quênia , Aceitação pelo Paciente de Cuidados de Saúde , Fatores Socioeconômicos
13.
BMC Infect Dis ; 6: 161, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17096840

RESUMO

BACKGROUND: African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN) can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. METHODS: High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997) and after (2004) implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. RESULTS: An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. CONCLUSION: As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.


Assuntos
Roupas de Cama, Mesa e Banho , Inseticidas , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Saúde da População Rural , Animais , Ensaios Clínicos como Assunto , Culicidae , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/prevenção & controle , Tanzânia
14.
Malar J ; 5: 9, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16457724

RESUMO

BACKGROUND: Integrated vector management (IVM) for malaria control requires ecological skills that are very scarce and rarely applied in Africa today. Partnerships between communities and academic ecologists can address this capacity deficit, modernize the evidence base for such approaches and enable future scale up. METHODS: Community-based IVM programmes were initiated in two contrasting settings. On Rusinga Island, Western Kenya, community outreach to a marginalized rural community was achieved by University of Nairobi through a community-based organization. In Dar es Salaam, Tanzania, Ilala Municipality established an IVM programme at grassroots level, which was subsequently upgraded and expanded into a pilot scale Urban Malaria Control Programme with support from national academic institutes. RESULTS: Both programmes now access relevant expertise, funding and policy makers while the academic partners benefit from direct experience of community-based implementation and operational research opportunities. The communities now access up-to-date malaria-related knowledge and skills for translation into local action. Similarly, the academic partners have acquired better understanding of community needs and how to address them. CONCLUSION: Until sufficient evidence is provided, community-based IVM remains an operational research activity. Researchers can never directly support every community in Africa so community-based IVM strategies and tactics will need to be incorporated into undergraduate teaching programmes to generate sufficient numbers of practitioners for national scale programmes. Academic ecologists at African institutions are uniquely positioned to enable the application of practical environmental and entomological skills for malaria control by communities at grassroots level and should be supported to fulfil this neglected role.


Assuntos
Anopheles , Planejamento em Saúde Comunitária/organização & administração , Promoção da Saúde/organização & administração , Insetos Vetores , Malária/prevenção & controle , Controle de Mosquitos/métodos , África , Animais , Planejamento em Saúde Comunitária/economia , Planejamento em Saúde Comunitária/métodos , Participação da Comunidade/métodos , Humanos , Malária/transmissão , Vigilância da População , População Rural , População Urbana
15.
Malar J ; 4: 7, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15667666

RESUMO

BACKGROUND: Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully tested in Kenya. However, the Mbita trap is less effective at catching outdoor-biting Anopheles funestus and Anopheles arabiensis in Madagascar and, thus, there is need to further evaluate this trap in diverse epidemiological settings. This study reports a field evaluation of the Mbita trap in a rice irrigation scheme in Kenya METHODS: The mosquito sampling efficiency of the Mbita trap was compared to that of the CDC light trap and the human landing catch in western Kenya. Data was analysed by Bayesian regression of linear and non-linear models. RESULTS: The Mbita trap caught about 17%, 60%, and 20% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in sampling proportionality between the Mbita trap and the human landing catch for both An. arabiensis and the culicine species. For An. funestus, the Mbita trap portrayed some density-dependent sampling efficiency that suggested lowered sampling efficiency of human landing catch at low densities. The CDC light trap caught about 60%, 120%, and 552% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in the sampling proportionality between the CDC light trap and the human landing catch for both An. arabiensis and An. funestus, whereas for the culicines, there was no simple relationship between the two methods. CONCLUSIONS: The Mbita trap is less sensitive than either the human landing catch or the CDC light trap. However, for a given investment of time and money, it is likely to catch more mosquitoes over a longer (and hence more representative) period. This trap can therefore be recommended for use by community members for passive mosquito surveillance. Nonetheless, there is still a need to develop new sampling methods for some epidemiological settings. The human landing catch should be maintained as the standard reference method for use in calibrating new methods for sampling the human biting population of mosquitoes.


Assuntos
Anopheles/fisiologia , Culicidae/fisiologia , Controle de Insetos/instrumentação , Insetos Vetores/fisiologia , Animais , Anopheles/classificação , Culicidae/classificação , Feminino , Humanos , Controle de Insetos/ética , Insetos Vetores/classificação , Quênia , Malária/prevenção & controle , Masculino , Reação em Cadeia da Polimerase/veterinária , Vigilância da População/métodos
17.
Am J Trop Med Hyg ; 70(1): 33-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14971695

RESUMO

The mosquito sampling efficiency of a new bed net trap (the Mbita trap) was compared with that of the Centers for Disease Control miniature light trap (hung adjacent to an occupied bed net) and the human landing catch in western Kenya. Overall, the Mbita trap caught 48.7 +/- 4.8% (mean +/- SEM) the number of Anopheles gambiae Giles sensu lato caught in the human landing catch and 27.4 +/- 8.2% of the number caught by the light trap. The corresponding figures for Anopheles funestus Giles were 74.6 +/- 1.3% and 39.2 +/- 1.9%, respectively. Despite the clear differences in the numbers of mosquitoes caught by each method, both the Mbita trap and light trap catches were directly proportional to human landing catches regardless of mosquito density. No significant differences in parity or sporozoite incidence were observed between mosquitoes caught by the three methods for either An. gambiae s.l. or An. funestus. Identification of the sibling species of the An. gambiae complex by a polymerase chain reaction indicated that the ratio of An. gambiae Giles sensu stricto to An. arabiensis Patton did not vary according to the sampling method used. It is concluded that the Mbita trap is a promising tool for sampling malaria vector populations since its catch can be readily converted into equivalent human biting catch, it can be applied more intensively, it requires neither expensive equipment nor skilled personnel, and it samples mosquitoes in an exposure-free manner. Such intensive sampling capability will allow cost-effective surveillance of malaria transmission at much finer spatial and temporal resolution than has been previously possible.


Assuntos
Anopheles , Insetos Vetores , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Roupas de Cama, Mesa e Banho , Feminino , Humanos , Quênia , Masculino
18.
Am J Trop Med Hyg ; 68(4 Suppl): 16-22, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12749481

RESUMO

The effect of permethrin-treated bed nets (ITNs) on malaria vectors was studied as part of a large-scale, randomized, controlled trial in western Kenya. Indoor resting densities of fed Anopheles gambiae s.l. and An. funestus in intervention houses were 58.5% (P = 0.010) and 94.5% (P = 0.001) lower, respectively, compared with control houses. The sporozoite infection rate in An. gambiae s.l. was 0.8% in intervention areas compared with 3.4% (P = 0.026) in control areas, while the sporozoite infection rates in An. funestus were not significantly different between the two areas. We estimated the overall transmission of Plasmodium falciparum in intervention areas to be 90% lower than in control areas. Permethrin resistance was not detected during the study period. As measured by densities of An. gambiae s.l., the efficacy of bed nets decreased if one or more residents did not sleep under a net or if bed nets had not been re-treated within six months. These results indicate that ITNs are optimally effective if used every night and if permethrin is reapplied at least biannually.


Assuntos
Roupas de Cama, Mesa e Banho , Inseticidas/farmacologia , Malária Falciparum/prevenção & controle , Permetrina/farmacologia , Animais , Anopheles/parasitologia , Humanos , Insetos Vetores , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Densidade Demográfica , Estações do Ano
19.
Malar J ; 1: 19, 2002 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-12537599

RESUMO

BACKGROUND: The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. METHODS: We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs), we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. RESULTS: Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking) occurred successfully. CONCLUSION: The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritized. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases.


Assuntos
Anopheles/crescimento & desenvolvimento , Sistemas Ecológicos Fechados , Insetos Vetores/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia , Animais , Anopheles/fisiologia , Ecologia/métodos , Feminino , Humanos , Umidade , Insetos Vetores/fisiologia , Quênia , Masculino , Microclima , Plantas/classificação , Pupa/fisiologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...