Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(7): 2017-2026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38301222

RESUMO

Phoma black stem (PBS), caused by Phoma macdonaldii Boerema (teleomorph Leptosphaeria lindquistii Frezzi), is the most common stem disease of sunflower (Helianthus annuus L.) in the northern Great Plains region of the United States. However, the impact of PBS on sunflower yield in the United States is unclear, and a near complete absence of information on the impact of fungicides on disease management exists. The objectives of this study were to determine the impact of PBS on sunflower yield, the efficacy of available fungicides, the optimal fungicide application timing, and the economic viability of fungicides as a management tool. Fungicide timing efficacy was evaluated by applying single and/or sequential applications of pyraclostrobin fungicide at three sunflower growth stages in 10 field trials between 2017 and 2019. Efficacy of 10 fungicides from the Fungicide Resistance Action Committee (FRAC) groups 3, 7, and 11 were evaluated in four field trials between 2018 and 2019. The impact of treatments on PBS were evaluated by determination of incidence, severity, maximum lesion height, disease severity index (DSI), and harvested yield. Nine of the 10 fungicides evaluated and all fungicide timings that included an early bud application resulted in disease reductions when compared with the nontreated controls. The DSI was negatively correlated to sunflower yield in high-yield environments (P = 0.0004; R2 = 0.3425) but not in low- or moderate-yield environments. Although FRAC 7 fungicides were generally most efficacious, the sufficient efficacy and lower cost of FRAC 11 fungicides make them more economically viable in high-yielding environments at current market conditions.


Assuntos
Ascomicetos , Fungicidas Industriais , Helianthus , Doenças das Plantas , Fungicidas Industriais/farmacologia , Helianthus/efeitos dos fármacos , Helianthus/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Estados Unidos , Caules de Planta/microbiologia , Estrobilurinas/farmacologia , Fatores de Tempo
2.
Plant Dis ; 108(3): 647-657, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37729650

RESUMO

The purpose of our study was to determine whether the application of quinone outside inhibitor (QoI) and pyrazole-carboxamide fungicides as a tank mix would impact the endophyte community of soybean seed. Field trials during 2018 in Iowa, South Dakota, and Wisconsin, U.S.A., investigated the impact of a single combination fungicide spray at early pod set in soybeans. The composition of culturable endophytic fungi in mature soybean seed was assessed on three cultivars per state, with maturity groups (MGs) ranging from 1.1 to 4.7. An unusually wet 2018 season delayed harvest, which led to a high level of fungal growth in grain. The survey included 1,080 asymptomatic seeds that were disinfested and individually placed on 5-cm-diameter Petri plates of acidified water agar. The survey yielded 721 fungal isolates belonging to 24 putative species in seven genera; taxa were grouped into genera based on a combination of morphological and molecular evidence. The dominant genera encountered in the survey were Alternaria, Diaporthe, and Fusarium. The study showed that the fungicide treatment reduced the incidence of Fusarium in Wisconsin seed, increased the incidence of Diaporthe in seed from all states, and had no impact on the incidence of Alternaria. This is one of the first attempts to characterize the diversity of seed endophytes in soybean and the first to characterize the impacts of fungicide spraying on these endophyte communities across three states. Our study provides evidence that the impact of a fungicide spray on soybean seed endophyte communities may be influenced by site, weather, and cultivar maturity group.


Assuntos
Fungicidas Industriais , Fusarium , Saccharomycetales , Estados Unidos , Fungicidas Industriais/farmacologia , Glycine max , Endófitos , Alternaria , Sementes , Iowa
3.
Front Genet ; 14: 1103969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351341

RESUMO

Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.

4.
Plant Dis ; 107(3): 667-674, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35857370

RESUMO

Diaporthe gulyae and D. helianthi cause Phomopsis stem canker of sunflower (Helianthus annuus L.) in the United States. Because Phomopsis stem canker did not gain importance until the disease epidemic in 2010, limited studies were conducted to understand the genetic basis of sunflower resistance to D. gulyae and D. helianthi. The objectives of this study were to evaluate the United States Department of Agriculture cultivated accessions for resistance to D. gulyae and D. helianthi as well as to utilize genome-wide association studies (GWAS) to identify quantitative trait loci (QTLs) and putative candidate genes underlying those loci common to both organisms. For each fungus, 213 accessions were screened in a complete randomized design in the greenhouse and the experiment was repeated once. Six plants per accession were inoculated with a single isolate of D. gulyae or D. helianthi at four to six true leaves using the mycelium-contact inoculation method. At 15 days (D. gulyae) and 30 days (D. helianthi) postinoculation, accessions were evaluated for disease severity and compared with the susceptible confection inbred PI 552934. GWAS identified 28 QTLs common to the two fungi, and 24 genes overlapped close to these QTLs. Additionally, it was observed that the resistance QTLs derived mainly from landraces rather than from wild species. Seventeen putative candidate genes associated with resistance to D. gulyae or D. helianthi were identified that may be related to plant-pathogen interactions. These findings advanced our understanding of the genetic basis of resistance to D. gulyae and D. helianthi and will help develop resources for genomics-assisted breeding.


Assuntos
Ascomicetos , Helianthus , Melhoramento Vegetal , Doenças das Plantas , Ascomicetos/patogenicidade , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Helianthus/genética , Helianthus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Estados Unidos
5.
Plant Dis ; 107(3): 743-749, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35914292

RESUMO

Phomopsis stem canker reduces yield of sunflower (Helianthus annuus L.) up to or exceeding 40%; however, management recommendations have not been developed for U.S. farmers. Between 2009 and 2020, foliar fungicide trials were conducted in Minnesota, Nebraska, North Dakota, and South Dakota for a total of 49 location-years. Random effects meta-analyses were performed on the disease severity index (DSI) and yield data collected from the foliar fungicide trials to determine the overall and individual effectiveness of the tested fungicides. Effect sizes, Cohen's f or Hedges' g, were calculated as the difference in DSI or yield between the fungicide treatment and nontreated control (NTC) divided by the pooled SD. The pooled Cohen's f for DSI and yield was 0.40 (95% CI = [0.29, 0.42]), indicating a large effect size and that fungicide treatments had a significant effect on DSI and yield (P < 0.0001). Among the fungicide groups, quinone outside inhibitor (QoI) (DSI [k = 45; g = -0.47] and yield [k = 46; g = 0.41]) is moderately effective and premixes of demethylation inhibitors (DMI), succinate dehydrogenase inhibitors (SDHI), and QoI (DMI + SDHI + QoI) (DSI [k = 3; g = -0.79] and yield [k = 3; g = 0.94]) are largely effective in comparison with NTC. Upon performing prediction analyses, the probability of not recovering the fungicide application cost (Ploss) associated with QoI (pyraclostrobin) was <0.35 for a range of sunflower grain prices suggesting a greater probability of return on investment from a single application of fungicide. Overall, our study suggests that the use of QoI fungicides is likely to be profitable in the presence of Phomopsis stem canker (DSI > 5%).


Assuntos
Fungicidas Industriais , Helianthus , Fungicidas Industriais/farmacologia , Phomopsis , Doenças das Plantas/prevenção & controle , Minnesota
6.
Plant Dis ; 105(6): 1621-1629, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33231523

RESUMO

Diaporthe seed decay can compromise seed quality in soybean [Glycine max (L.) Merr.] in the warm and humid production areas of the United States during crop maturation. In the current study, 45 isolates of Diaporthe were recovered from seed sampled from soybean fields affected by Diaporthe-associated diseases in eight U.S. states in 2017. The isolates obtained belonged to 10 species of Diaporthe based on morphology and phylogenetic analyses of the internal transcribed spacer, partial translation elongation factor 1-α, and ß-tubulin gene sequences. The associated species included D. aspalathi, D. caulivora, D. kongii, D. longicolla, D. sojae, D. ueckerae, D. unshiuensis, and three novel fungi, D. bacilloides, D. flavescens, and D. insulistroma. One isolate each of the 10 species was examined for pathogenicity on seed of cultivar Sava under controlled conditions. Seven days postinoculation, significant differences in the percentages of decayed seeds and seedling necrosis were observed among the isolates and the noninoculated control (P < 0.0001). While the isolates of D. bacilloides, D. longicolla, and D. ueckerae caused a significantly greater percentage of decayed seeds (P < 0.0001), the isolate of D. aspalathi caused the greatest seedling necrosis (P < 0.0001). The observation of new fungi causing Diaporthe seed decay suggests the need for a more comprehensive survey in U.S. soybean producing areas since members of the genus Diaporthe appear to form a complex that causes seed decay.


Assuntos
Ascomicetos , Saccharomycetales , Ascomicetos/genética , Filogenia , Sementes , Glycine max , Estados Unidos
7.
Plant Dis ; 104(6): 1736-1743, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289247

RESUMO

In total, 52 uniform field experiments were conducted in Illinois, Indiana, Iowa, Michigan, South Dakota, and Wisconsin in the United States and Ontario, Canada from 2013 to 2017 comparing crop protection products against sudden death syndrome (SDS) of soybean. Data were analyzed using meta-analytic models to summarize the relationship between foliar disease index (FDX) and yield. For each study, correlation and regression analyses were performed separately to determine three effect sizes: Fisher's transformation of correlation coefficients (Z r ), intercept (ß0), and slope (ß1). Random- and mixed-effect meta-analyses were used to summarize the effect sizes. Study- and location-specific moderator variables FDX (low < 10% and high ≥ 10%), date of planting (early = prior to 7 May, conventional = 7 to 21 May, and late = after 21 May) cultivar (susceptible and partially resistant to SDS), study location, and growing season were used as fixed effects. The overall mean effect sizes of transformed correlation coefficient [Formula: see text] r was -0.41 and different from zero (P < 0.001), indicating that yield was negatively correlated with FDX. The [Formula: see text] r was affected by disease level (P < 0.01) and cultivar (P = 0.02), with a greater effect at higher disease levels and with susceptible cultivars. The mean [Formula: see text] 0 was 4,121 kg/ha and mean [Formula: see text] 1 was -21 kg/ha/% FDX and were different from zero (P < 0.01). Results from these data indicate that, for every unit of FDX increase, yield was decreased by 0.5%. Study locations and year affected the [Formula: see text] 0 , whereas none of the moderator variables significantly affected [Formula: see text] 1.


Assuntos
Fusarium , Morte Súbita , Humanos , Illinois , Iowa , Michigan , Ontário , Doenças das Plantas , Glycine max , Estados Unidos , Wisconsin
8.
Plant Dis ; 104(3): 793-800, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31951508

RESUMO

Phomopsis stem canker of sunflower is caused by two fungal pathogens, Diaporthe helianthi and Diaporthe gulyae, in the United States. In this study, two quantitative PCR (qPCR) assays were developed to detect and quantify D. helianthi and D. gulyae in sunflower. The two assays differentiated the two fungi from each other, other species of the genus Diaporthe, and pathogens, and they have high efficiency (>90%). The qPCR assays detected the two pathogens on plant samples exhibiting Phomopsis stem canker symptoms sampled from commercial sunflower fields in Minnesota, Nebraska, North Dakota, and South Dakota. Furthermore, the assays were used to screen cultivated sunflower accessions for resistance to D. helianthi and D. gulyae. The disease severity index (DSI) of the accessions significantly correlated (P < 0.0001) with the amount of pathogen DNA from the qPCR assays. The qPCR assays identified PI664232 and PI561918 to be significantly less susceptible (P ≤ 0.05) to D. helianthi and D. gulyae, respectively, when compared with the susceptible check cultivar HA 288, and this was in agreement with the DSI. These results suggest that the qPCR assays for D. helianthi and D. gulyae can be used as a reliable tool to diagnose Phomopsis stem canker and screen sunflower germplasm for disease resistance.


Assuntos
Helianthus , Minnesota , Nebraska , North Dakota , Doenças das Plantas , Reação em Cadeia da Polimerase , Estados Unidos
9.
Plants (Basel) ; 8(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561499

RESUMO

Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid-nematode interactions, particularly in the soybean-SBA-SCN system.

10.
Sci Data ; 6(1): 133, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341170

RESUMO

Soybean aphid (Aphis glycines; SBA) and soybean cyst nematode (Heterodera glycines; SCN) are two major pests of soybean (Glycine max) in the United States of America. This study aims to characterize three-way interactions among soybean, SBA, and SCN using both demographic and genetic datasets. SCN-resistant and SCN-susceptible soybean cultivars with a combination of soybean aphids (biotype 1) and SCN (HG type 0) in a randomized complete block design (RCBD) with six blocks were used to evaluate the three-way interactions in a greenhouse setup. Treatments receiving SCN were infested at planting with 2000 nematode eggs, and the treatments with soybean aphids were infested at second trifoliate growth stage (V2) with 15 soybean aphids. The whole roots were sampled from plants at 5 and 30 days post SBA infestation for RNA sequencing using Illumina Hiseq. 3000. The data comprises of 47 libraries that are useful for further analyses of important genes, which are involved in interaction effects of SBA and SCN on soybean.


Assuntos
Afídeos , Glycine max/genética , Doenças das Plantas/genética , Transcriptoma , Tylenchoidea/patogenicidade , Animais , Perfilação da Expressão Gênica , Doenças das Plantas/parasitologia , RNA-Seq , Glycine max/parasitologia
11.
Plant Dis ; 103(7): 1712-1720, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059383

RESUMO

Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important soilborne disease of soybean. Risk of SDS increases when cool and wet conditions occur soon after planting. Recently, multiple seed treatment and foliar products have been registered and advertised for management of SDS but not all have been tested side by side in the same field experiment at multiple field locations. In 2015 and 2016, seed treatment fungicides fluopyram and thiabendazole; seed treatment biochemical pesticides citric acid and saponins extract of Chenopodium quinoa; foliar fungicides fluoxastrobin + flutriafol; and an herbicide, lactofen, were evaluated in Illinois, Indiana, Iowa, Michigan, South Dakota, Wisconsin, and Ontario for SDS management. Treatments were tested on SDS-resistant and -susceptible cultivars at each location. Overall, fluopyram provided the highest level of control of root rot and foliar symptoms of SDS among all the treatments. Foliar application of lactofen reduced foliar symptoms in some cases but produced the lowest yield. In 2015, fluopyram reduced the foliar disease index (FDX) by over 50% in both resistant and susceptible cultivars and provided 8.9% yield benefit in susceptible cultivars and 3.5% yield benefit in resistant cultivars compared with the base seed treatment (control). In 2016, fluopyram reduced FDX in both cultivars by over 40% compared with the base seed treatment. For yield in 2016, treatment effect was not significant in the susceptible cultivar while, in the resistant cultivar, fluopyram provided 3.5% greater yield than the base seed treatment. In this study, planting resistant cultivars and using fluopyram seed treatment were the most effective tools for SDS management. However, plant resistance provided an overall better yield-advantage than using fluopyram seed treatment alone. Effective seed treatments can be an economically viable consideration to complement resistant cultivars for managing SDS.


Assuntos
Proteção de Cultivos , Fungicidas Industriais , Fusarium , Glycine max , Proteção de Cultivos/métodos , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Ontário , Doenças das Plantas/prevenção & controle , Sementes/química , Glycine max/crescimento & desenvolvimento , Estados Unidos
12.
Plant Dis ; 103(4): 677-684, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742552

RESUMO

One hundred fifty-two Diaporthe isolates were recovered from symptomatic soybean (Glycine max) stems sampled from the U.S. states of Iowa, Indiana, Kentucky, Michigan, and South Dakota. Using morphology and DNA sequencing, isolates were identified as D. aspalathi (8.6%), D. caulivora (24.3%), and D. longicolla (67.1%). Aggressiveness of five isolates each of the three pathogens was studied on cultivars Hawkeye (D. caulivora and D. longicolla) and Bragg (D. aspalathi) using toothpick, stem-wound, mycelium contact, and spore injection inoculation methods in the greenhouse. For D. aspalathi, methods significantly affected disease severity (P < 0.001) and pathogen recovery (P < 0.001). The relative treatment effects (RTE) of stem-wound and toothpick methods were significantly greater than for the other methods. For D. caulivora and D. longicolla, a significant isolate × method interaction affected disease severity (P < 0.05) and pathogen recovery (P < 0.001). Significant differences in RTEs were observed among D. caulivora and D. longicolla isolates only when the stem-wound and toothpick methods were used. Our study has determined that the stem-wound and toothpick methods are reliable to evaluate the three pathogens; however, the significant isolate × method interactions for D. caulivora and D. longicolla indicate that multiple isolates should also be considered for future pathogenicity studies.


Assuntos
Ascomicetos , Microbiologia de Alimentos , Glycine max , Ascomicetos/fisiologia , Meio-Oeste dos Estados Unidos , Glycine max/microbiologia
13.
Biochem Genet ; 56(4): 397-422, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29500532

RESUMO

Disease-resistant genes (R genes) encode proteins that are involved in protecting plants from their pathogens and pests. Availability of complete genome sequences from soybean and common bean allowed us to perform a genome-wide identification and analysis of the Toll interleukin-1 receptor-like nucleotide-binding site leucine-rich repeat (TNL) proteins. Hidden Markov model (HMM) profiling of all protein sequences resulted in the identification of 117 and 77 regular TNL genes in soybean and common bean, respectively. We also identified TNL gene homologs with unique domains, and signal peptides as well as nuclear localization signals. The TNL genes in soybean formed 28 clusters located on 10 of the 20 chromosomes, with the majority found on chromosome 3, 6 and 16. Similarly, the TNL genes in common bean formed 14 clusters located on five of the 11 chromosomes, with the majority found on chromosome 10. Phylogenetic analyses of the TNL genes from Arabidopsis, soybean and common bean revealed less divergence within legumes relative to the divergence between legumes and Arabidopsis. Syntenic blocks were found between chromosomes Pv10 and Gm03, Pv07 and Gm10, as well as Pv01 and Gm14. The gene expression data revealed basal level expression and tissue specificity, while analysis of available microRNA data showed 37 predicted microRNA families involved in targeting the identified TNL genes in soybean and common bean.


Assuntos
Evolução Molecular , Genes de Plantas , Glycine max/metabolismo , Phaseolus/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Cromossomos de Plantas , Leucina/genética , MicroRNAs/genética , Família Multigênica , Sinais de Localização Nuclear , Filogenia , Proteínas de Plantas/química , Receptor 1 Toll-Like/genética
14.
Plant Dis ; 102(6): 1093-1100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30673444

RESUMO

A meta-analytic approach was used to summarize data on the effects of fluopyram-amended seed treatment on sudden death syndrome (SDS) and yield of soybean (Glycine max L.) in over 200 field trials conducted in 12 U.S. states and Ontario, Canada from 2013 to 2015. In those trials, two treatments-the commercial base (CB), and CB plus fluopyram (CBF)-were tested, and all disease and yield data were combined to conduct a random-effects and mixed-effects meta-analysis (test of moderators) to estimate percent control and yield response relative to CB. Overall, a 35% reduction in foliar disease and 295 kg/ha (7.6%) increase in yield were estimated for CBF relative to CB. Sowing date and geographic region affected both estimates. The variation in yield response was explained partially by disease severity (19%), geographic region (8%), and sowing date (10%) but not by the resistance level of the cultivar. The probability of not offsetting the cost of fluopyram was estimated on a range of grain prices and treatment cost combinations. There was a high probability (>80%) of yield gains when disease level was high in any cost-price combinations tested but very low when the foliar symptoms of the disease were absent.


Assuntos
Benzamidas/farmacologia , Fungicidas Industriais/farmacologia , Glycine max/microbiologia , Piridinas/farmacologia , Sementes/microbiologia , Ontário , Doenças das Plantas , Estados Unidos
15.
Plant Dis ; 100(8): 1669-1676, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30686243

RESUMO

Diaporthe caulivora and D. longicolla are the causal agents of stem canker of soybean (Glycine max L.). Accurate identification of stem canker pathogens upon isolation from infected soybean plants is difficult and unreliable based on morphology. In this study, two TaqMan probe-based quantitative polymerase chain reaction (qPCR) assays were optimized for detection of D. caulivora and D. longicolla in soybean plants. The assays used previously reported D. caulivora-specific (DPC-3) and D. longicolla-specific (PL-3) probe/primer sets. The sensitivity limit of the two assays was determined to be over a range of 100 pg to 10 fg of pure D. caulivora and D. longicolla genomic DNA. The qPCR assays were validated with plant samples collected from commercial soybean fields. The PL-3 set detected D. longicolla in soybean plants collected from the fields (quantification cycle value <35), which was confirmed by isolation on potato dextrose agar (PDA). D. caulivora was detected only in low levels (quantification cycle value <40) by DPC-3 set in a few of the symptomatic field samples, although the pathogen was not isolated on PDA. The qPCR assays were also useful in quantitatively phenotyping soybean plants for resistance to D. caulivora and D. longicolla under greenhouse conditions.

16.
Phytopathology ; 105(7): 990-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26121367

RESUMO

Phomopsis stem canker causes yield reductions on sunflower (Helianthus annuus L.) on several continents, including Australia, Europe, and North America. In the United States, Phomopsis stem canker incidence has increased 16-fold in the Northern Great Plains between 2001 and 2012. Although Diaporthe helianthi was assumed to be the sole causal agent in the United States, a newly described species, D. gulyae, was found to be the primary cause of Phomopsis stem canker in Australia. To determine the identity of Diaporthe spp. causing Phomopsis stem canker in the Northern Great Plains, 275 infected stems were collected between 2010 and 2012. Phylogenetic analyses of sequences of the ribosomal DNA internal transcribed spacer region, elongation factor subunit 1-α, and actin gene regions of representative isolates, in comparison with those of type specimens, confirmed two species (D. helianthi and D. gulyae) in the United States. Differences in aggressiveness between the two species were determined using the stem-wound method in the greenhouse; overall, D. helianthi and D. gulyae did not vary significantly (P≤0.05) in their aggressiveness at 10 and 14 days after inoculation. These findings indicate that both Diaporthe spp. have emerged as sunflower pathogens in the United States, and have implications on the management of this disease.


Assuntos
Ascomicetos/genética , Helianthus/microbiologia , Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno , Filogenia , Doenças das Plantas , Estados Unidos
17.
Fungal Biol ; 118(9-10): 764-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25209635

RESUMO

This study characterized a novel sugar beet (Beta vulgaris L.) pathogen from the Red River Valley in north central USA, which was formally named Fusarium secorum. Molecular phylogenetic analyses of three loci (translation elongation factor1α, calmodulin, mitochondrial small subunit) and phenotypic data strongly supported the inclusion of F. secorum in the Fusarium fujikuroi species complex (FFSC). Phylogenetic analyses identified F. secorum as a sister taxon of F. acutatum and a member of the African subclade of the FFSC. Fusarium secorum produced circinate hyphae sometimes bearing microconidia and abundant corkscrew-shaped hyphae in culture. To assess mycotoxin production potential, 45 typical secondary metabolites were tested in F. secorum rice cultures, but only beauvericin was produced in detectable amounts by each isolate. Results of pathogenicity experiments revealed that F. secorum isolates are able to induce half- and full-leaf yellowing foliar symptoms and vascular necrosis in roots and petioles of sugar beet. Inoculation with F. acutatum did not result in any disease symptoms. The sugar beet disease caused by F. secorum is named Fusarium yellowing decline. Since Fusarium yellowing decline incidence has been increasing in the Red River Valley, disease management options are discussed.


Assuntos
Beta vulgaris/microbiologia , Fusarium/classificação , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Calmodulina/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Fusarium/citologia , Fusarium/fisiologia , Hifas/citologia , Hifas/crescimento & desenvolvimento , Dados de Sequência Molecular , Micotoxinas/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...