Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138308

RESUMO

Advances in the field of nanobiotechnology are largely due to discoveries in the field of materials. Recent developments in the field of electrochemical biosensors based on transition metal nanomaterials as transducer elements have been beneficial as they possess various functionalities that increase surface area and provide well-defined active sites to accommodate elements for rapid detection of biomolecules. In recent years, transition metal dichalcogenides (TMDs) have become the focus of interest in various applications due to their considerable physical, chemical, electronic, and optical properties. It is worth noting that their unique properties can be modulated by defect engineering and morphology control. The resulting multifunctional TMD surfaces have been explored as potential capture probes for the rapid and selective detection of biomolecules. In this review, our primary focus is to delve into the synthesis, properties, design, and development of electrochemical biosensors that are based on transition metal dichalcogenides (TMDs) for the detection of biomolecules. We aim to explore the potential of TMD-based electrochemical biosensors, identify the challenges that need to be overcome, and highlight the opportunities for further future development.

2.
Chemosphere ; 342: 140177, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716554

RESUMO

Rising concerns of pesticide-induced neurotoxicity and neurodegenerative diseases like Parkinson's, Alzheimer's, and Multiple Sclerosis, are exacerbated by overexposure to contaminated waterbodies. Therefore, evaluating the risk accurately requires reliable monitoring of related biomarkers like dopamine (DA) through electrochemical detection. Layered double hydroxides (LDHs) have shown great potential in sensors. However, to meet the challenges of rapid detection of large patient cohorts in real-time biological media, they should be further tailored to display superior analytical readouts. Herein, a ternary LDH (Ni2CoMn0.5) was integrated with the sheets of thermally reduced graphene oxide (trGO), to expose more highly active edge planes of the LDH, as opposed to its generally observed inert basal planes. The improvement in detection performance through such a modulated structure-property is a prospect that hasn't been previously explored for any other LDH-based materials employed in sensing applications. The 2 folds superior electrochemical activity exhibited by the face-on oriented LDH with trGO as compared to the pristine LDH material was further employed for direct detection of DA in real blood plasma samples. Moreover, the designed sensor exhibited exceptional selectivity towards the detection of DA with a limit of detection of 34.6 nM for a wide dynamic range of 0.001-5 mM with exceptional stability retaining 88.56% of the initial current even after storage in ambient conditions for 30 days.


Assuntos
Dopamina , Técnicas Eletroquímicas , Humanos , Técnicas Eletroquímicas/métodos , Hidróxidos/química
4.
ACS Omega ; 6(12): 8068-8080, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817466

RESUMO

Nitric oxide (NO) plays a crucial and important role in cellular physiology and also acts as a signaling molecule for cancer in humans. However, conventional detection methods have their own limitations in the detection of NO at low concentrations because of its high reactivity and low lifetime. Herein, we report a strategy to fabricate Pt nanoparticle-decorated electrochemically reduced graphene oxide (erGO)-modified glassy carbon electrode (GCE) with efficiency to detect NO at a low concentration. For this study, Pt@erGO/GCE was fabricated by employing two different sequential methods [first GO reduction followed by Pt electrodeposition (SQ-I) and Pt electrodeposition followed by GO reduction (SQ-II)]. It was interesting to note that the electrocatalytic current response for SQ-I (184 µA) was ∼15 and ∼3 folds higher than those of the bare GCE (11.7 µA) and SQ-II (61.5 µA). The higher current response was mainly attributed to a higher diffusion coefficient and electrochemically active surface area. The proposed SQ-I electrode exhibited a considerably low LOD of 52 nM (S/N = 3) in a linear range of 0.25-40 µM with a short response time (0.7 s). In addition, the practical analytical applicability of the proposed sensor was also verified.

5.
Biosens Bioelectron ; 115: 53-60, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29800831

RESUMO

An unusual approach is reported herein to fabricate magnetic hematite (α-Fe2O3) decorated electrochemically reduced graphene oxide (α-Fe2O3@erGO) nanocomposite. The method utilizes direct electrochemical reduction of self-assembled, ex-situ synthesized α-Fe2O3 anchored GO to erGO (α-Fe2O3@erGO) on glassy carbon electrode (GCE) for selective detection dopamine (DA), an important biomarker of Parkinson's disease. The formation of α-Fe2O3@erGO/GCE has been confirmed by XPS and Raman spectroscopy. α-Fe2O3@erGO modified GCE exhibits synergistic catalytic activity nearly 2.2 and 5 fold higher than α-Fe2O3@GO and other modified electrodes, respectively towards oxidation of DA. The fabricated sensor exhibited linear dynamic ranges over 0.25 - 100 µM in response to DA with a LOD of 0.024 µM (S/N = 3), LOQ of 0.08 µM (S/N = 10), and a sensitivity of 12.56 µA µM-1 cm-2. Finally, the practical analytical application of the proposed α-Fe2O3@erGO/GCE was investigated for the determination of DA in commercially available pharmaceutical formulation and human serum samples, and showed satisfactory recovery results towards DA.


Assuntos
Biomarcadores/sangue , Técnicas Biossensoriais , Dopamina/química , Doença de Parkinson/sangue , Grafite/química , Humanos , Ferro/química , Nanocompostos/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...