Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 6: 268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347771

RESUMO

The ability to infer the parameters of positive selection from genomic data has many important implications, from identifying drug-resistance mutations in viruses to increasing crop yield by genetically integrating favorable alleles. Although it has been well-described that selection and demography may result in similar patterns of diversity, the ability to jointly estimate these two processes has remained elusive. Here, we use simulation to explore the utility of the joint site frequency spectrum to estimate selection and demography simultaneously, including developing an extension of the previously proposed Jaatha program (Mathew et al., 2013). We evaluate both complete and incomplete selective sweeps under an isolation-with-migration model with and without population size change (both population growth and bottlenecks). Results suggest that while it may not be possible to precisely estimate the strength of selection, it is possible to infer the presence of selection while estimating accurate demographic parameters. We further demonstrate that the common assumption of selective neutrality when estimating demographic models may lead to severe biases. Finally, we apply the approach we have developed to better characterize the within-host demographic and selective history of human cytomegalovirus (HCMV) infection using published next generation sequencing data.

2.
Ecol Evol ; 3(11): 3647-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24198930

RESUMO

With the advent of next-generation sequencing technologies, large data sets of several thousand loci from multiple conspecific individuals are available. Such data sets should make it possible to obtain accurate estimates of population genetic parameters, even for complex models of population history. In the analyses of large data sets, it is difficult to consider finite-sites mutation models (FSMs). Here, we use extensive simulations to demonstrate that the inclusion of FSMs is necessary to avoid severe biases in the estimation of the population mutation rate θ, population divergence times, and migration rates. We present a new version of Jaatha, an efficient composite-likelihood method for estimating demographic parameters from population genetic data and evaluate the usefulness of Jaatha in two biological examples. For the first application, we infer the speciation process of two wild tomato species, Solanum chilense and Solanum peruvianum. In our second application example, we demonstrate that Jaatha is readily applicable to NGS data by analyzing genome-wide data from two southern European populations of Arabidopsis thaliana. Jaatha is now freely available as an R package from the Comprehensive R Archive Network (CRAN).

3.
Theor Popul Biol ; 90: 1-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24051161

RESUMO

Beneficial mutations can co-occur when population structure slows down adaptation. Here, we consider the process of adaptation in asexual populations distributed over several locations ("islands"). New beneficial mutations arise at constant rate ub, and each mutation has the same selective advantage s>0. We assume that populations evolve within islands according to the successional mutations regime of Desai and Fisher (2007), that is, the time to local fixation of a mutation is short compared to the expected waiting time until the next mutation occurs. To study the rate of adaptation, we introduce an approximate model, the successional mutations (SM) model, which can be simulated efficiently and yields accurate results for a wide range of parameters. In the SM model, mutations fix instantly within islands, and migrants can take over the destination island if they are fitter than the residents. For the special case of a population distributed equally across two islands with population size N, we approximate the model further for small and large migration rates in comparison to the mutation rate. These approximations lead to explicit formulas for the rate of adaptation which fit the original model for a large range of parameter values. For the d island case we provide some heuristics on how to extend the explicit formulas and check these with computer simulations. We conclude that the SM model is a good approximation of the adaptation process in a structured population, at least if mutation or migration is limited.


Assuntos
Adaptação Fisiológica , Dinâmica Populacional , Modelos Teóricos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...