Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656634

RESUMO

The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.


Assuntos
Osso e Ossos , Osteoblastos , Humanos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Hormônios Hipofisários/metabolismo
4.
Allergy Asthma Immunol Res ; 14(6): 587-603, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426394

RESUMO

Food protein-induced enterocolitis syndrome (FPIES), though first reported in the 1970s, remains poorly understood and likely underdiagnosed. It is a non-immunoglobulin E (IgE)-mediated food allergy syndrome, most commonly identified in infancy and childhood. It can manifest as a constellation of symptoms following food ingestion, including repetitive and projectile emesis (1-4 hours), accompanied by pallor, lethargy, muscular hypotonia, and diarrhea (5-10 hours). In more severe reactions, significant leukocytosis with neutrophilia, thrombocytosis, metabolic derangements, methemoglobinemia, anemia, low albumin, and total protein may be present. Hypotension and ultimately hypovolemic distributive shock may occur in up to 15%-20% of cases. The diagnosis of FPIES is challenging and providers continue to face difficulties in management. This review article aims to highlight the most recent updates in epidemiology, natural history, pathophysiology, potential diagnostic markers, and guidelines for the management of FPIES.

5.
Proc Natl Acad Sci U S A ; 117(46): 28971-28979, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127753

RESUMO

Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with a KD of 7 nM. Protein thermal shift, molecular dynamics, and fine mapping of the FSH-FSH receptor interface confirm stable binding of the Fab domain to two of five receptor-interacting residues of the FSHß subunit, which is sufficient to block its interaction with the FSH receptor. In doing so, the humanized antibody profoundly inhibited FSH action in cell-based assays, a prelude to further preclinical and clinical testing.


Assuntos
Tecido Adiposo/metabolismo , Anticorpos Bloqueadores/imunologia , Osso e Ossos/metabolismo , Epitopos , Hormônio Foliculoestimulante/imunologia , Animais , Anticorpos Bloqueadores/química , Anticorpos Monoclonais , Densidade Óssea , Feminino , Hormônio Foliculoestimulante/química , Subunidade beta do Hormônio Folículoestimulante/imunologia , Humanos , Hipercolesterolemia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Obesidade , Osteoporose , Receptores do FSH/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(25): 14386-14394, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513693

RESUMO

We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine ß-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.


Assuntos
Disfunção Erétil/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Envelhecimento/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Reposicionamento de Medicamentos , Disfunção Erétil/complicações , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Osteoporose/complicações , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/uso terapêutico , Cultura Primária de Células , Tadalafila/química , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Dicloridrato de Vardenafila/química , Dicloridrato de Vardenafila/farmacologia , Dicloridrato de Vardenafila/uso terapêutico
7.
Proc Natl Acad Sci U S A ; 116(11): 5086-5095, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808805

RESUMO

The lysosomal enzyme glucocerebrosidase-1 (GCase) catalyzes the cleavage of a major glycolipid glucosylceramide into glucose and ceramide. The absence of fully functional GCase leads to the accumulation of its lipid substrates in lysosomes, causing Gaucher disease, an autosomal recessive disorder that displays profound genotype-phenotype nonconcordance. More than 250 disease-causing mutations in GBA1, the gene encoding GCase, have been discovered, although only one of these, N370S, causes 70% of disease. Here, we have used a knowledge-based docking protocol that considers experimental data of protein-protein binding to generate a complex between GCase and its known facilitator protein saposin C (SAPC). Multiscale molecular-dynamics simulations were used to study lipid self-assembly, membrane insertion, and the dynamics of the interactions between different components of the complex. Deep learning was applied to propose a model that explains the mechanism of GCase activation, which requires SAPC. Notably, we find that conformational changes in the loops at the entrance of the substrate-binding site are stabilized by direct interactions with SAPC and that the loss of such interactions induced by N370S and another common mutation, L444P, result in destabilization of the complex and reduced GCase activation. Our findings provide an atomistic-level explanation for GCase activation and the precise mechanism through which N370S and L444P cause Gaucher disease.


Assuntos
Aprendizado Profundo , Doença de Gaucher/enzimologia , Doença de Gaucher/fisiopatologia , Glucosilceramidase/metabolismo , Simulação de Dinâmica Molecular , Domínio Catalítico , Ativação Enzimática , Glucosilceramidase/química , Humanos , Ligação de Hidrogênio , Proteínas Mutantes/química , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína , Saposinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(52): E11248-E11256, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229831

RESUMO

Mutations in 11ß-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) cause an extraordinarily rare autosomal recessive disorder, apparent mineralocorticoid excess (AME). AME is a form of low renin hypertension that is potentially fatal if untreated. Mutations in the HSD11B2 gene result either in severe AME or a milder phenotype (type 2 AME). To date, ∼40 causative mutations have been identified. As part of the International Consortium for Rare Steroid Disorders, we have diagnosed and followed the largest single worldwide cohort of 36 AME patients. Here, we present the genotype and clinical phenotype of these patients, prominently from consanguineous marriages in the Middle East, who display profound hypertension and hypokalemic alkalosis. To correlate mutations with phenotypic severity, we constructed a computational model of the HSD11B2 protein. Having used a similar strategy for the in silico evaluation of 150 mutations of CYP21A2, the disease-causing gene in congenital adrenal hyperplasia, we now provide a full structural explanation for the clinical severity of AME resulting from each known HSD11B2 missense mutation. We find that mutations that allow the formation of an inactive dimer, alter substrate/coenzyme binding, or impair structural stability of HSD11B2 yield severe AME. In contrast, mutations that cause an indirect disruption of substrate binding or mildly alter intramolecular interactions result in type 2 AME. A simple in silico evaluation of novel missense mutations could help predict the often-diverse phenotypes of an extremely rare monogenic disorder.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Genótipo , Síndrome de Excesso Aparente de Minerolocorticoides , Mutação de Sentido Incorreto , Multimerização Proteica/genética , Adolescente , Criança , Pré-Escolar , Simulação por Computador , Estabilidade Enzimática , Feminino , Humanos , Lactente , Masculino , Síndrome de Excesso Aparente de Minerolocorticoides/enzimologia , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Síndrome de Excesso Aparente de Minerolocorticoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...