Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 376: 114751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484864

RESUMO

Despite great advances in acute care and rehabilitation, stroke remains the leading cause of motor impairment in the industrialized world. We have developed a deep brain stimulation (DBS)-based approach for post-stroke rehabilitation that has shown reproducible effects in rodent models and has been recently translated to humans. Mechanisms underlying the rehabilitative effects of this novel therapy have been largely focused on the ipsilesional cortex, including cortical reorganization, synaptogenesis, neurogenesis and greater expression of markers of long-term potentiation. The role of subcortical structures on its therapeutic benefits, particularly the striatum, remain unclear. In this study, we compared the motor rehabilitative effects of deep cerebellar stimulation in two rodent models of cerebral ischemia: a) cortical ischemia; and b) combined striatal and cortical ischemia. All animals underwent the same procedures, including implantation of the electrodes and tethered connections for stimulation. Both experimental groups received four weeks of continuous lateral cerebellar nucleus (LCN) DBS and each was paired with a no stimulation, sham, group. Fine motor function was indexed using the pasta matrix task. Brain tissue was harvested for histology and immunohistochemical analyses. In the cortical-only ischemia, the average pasta matrix performance of both sham and stimulated groups reduced from 19 to 24 pieces to 7-8 pieces following the stroke induction. At the end of the four-week treatment, the performance of stimulated group was significantly greater than that of sham group (14 pieces vs 7 pieces, p < 0.0001). Similarly, in the combined cortical and striatal ischemia, the performance of both sham and stimulated groups reduced from 29 to 30 pieces to 7-11 pieces following the stroke induction. However, at the end of the four-week treatment, the performance of stimulated group was not significantly greater than that of sham group (15 pieces vs 11 pieces, p = 0.452). In the post-mortem analysis, the number of cells expressing CaMKIIα at the perilesional cortical and striatum of the LCN DBS treated animals receiving cortical-only stroke elevated but not those receiving cortical+striatal stroke. The current findings suggested that the observed, LCN DBS-enhanced motor recovery and perilesional plasticity may involve striatal mechanisms.


Assuntos
Corpo Estriado , Estimulação Encefálica Profunda , AVC Isquêmico , Recuperação de Função Fisiológica , Animais , Estimulação Encefálica Profunda/métodos , Recuperação de Função Fisiológica/fisiologia , Masculino , AVC Isquêmico/terapia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/patologia , Corpo Estriado/patologia , Ratos , Ratos Sprague-Dawley , Cerebelo/patologia , Reabilitação do Acidente Vascular Cerebral/métodos
2.
Exp Neurol ; 355: 114136, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667396

RESUMO

Functional outcome following traumatic brain injury (TBI) varies greatly, with approximately half of those who survive suffering long-term motor and cognitive deficits despite contemporary rehabilitation efforts. We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) enhances rehabilitation of motor deficits that result from brain injury. The objective of the present study was to evaluate the efficacy of LCN DBS on recovery from rodent TBI that uniquely models the injury location, chronicity and resultant cognitive symptoms observed in most human TBI patients. We used controlled cortical impact (CCI) to produce an injury that targeted the medial prefrontal cortex (mPFC-CCI) bilaterally, resulting in cognitive deficits. Unilateral LCN DBS electrode implantation was performed 6 weeks post-injury. Electrical stimulation started at week eight post-injury and continued for an additional 4 weeks. Cognition was evaluated using baited Y-maze, novel object recognition task and Barnes maze. Post-mortem analyses, including Western Blot and immunohistochemistry, were conducted to elucidate the cellular and molecular mechanisms of recovery. We found that mPFC-CCI produced significant cognitive deficits compared to pre-injury and naïve animals. Moreover, LCN DBS treatment significantly enhanced the long-term memory process and executive functions of applying strategy. Analyses of post-mortem tissues showed significantly greater expression of CaMKIIα, BDNF and p75NTR across perilesional cortex and higher expression of postsynaptic formations in LCN DBS-treated animals compared to untreated. Overall, these data suggest that LCN DBS is an effective treatment of cognitive deficits that result from TBI, possibly by activation of ascending, glutamatergic projections to thalamus and subsequent upregulation of thalamocortical activity that engages neuroplastic mechanisms for facilitation of functional re-organization. These results support a role for cerebellar output neuromodulation as a novel therapeutic approach to enhance rehabilitation for patients with chronic, post-TBI cognitive deficits that are unresponsive to traditional rehabilitative efforts.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Estimulação Encefálica Profunda , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Núcleos Cerebelares/fisiologia , Cognição , Estimulação Encefálica Profunda/métodos , Roedores
3.
Brain Stimul ; 11(6): 1356-1367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061053

RESUMO

BACKGROUND: Many traumatic brain injury (TBI) survivors live with persistent disability from chronic motor deficits despite contemporary rehabilitation services, underscoring the need for novel treatment. OBJECTIVE/HYPOTHESIS: We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) can enhance post-stroke motor recovery and increase the expression of markers of long-term potentiation in perilesional cerebral cortex. We hypothesize that a similar beneficial effect will be for motor deficits induced by unilateral fluid percussion injury (FPI) in rodents through long-term potentiation- and anti-inflammatory based mechanisms. METHODS: Male Long Evans rats with a DBS macroelectrode in the LCN underwent FPI over contralateral primary motor cortex. After 4 weeks of spontaneous recovery, DBS treatment was applied for 4 weeks, with the pasta matrix, cylinder, and horizontal ladder tests used to evaluate motor performance. All animals were euthanized and tissue harvested for further analysis by histology, immunohistochemistry, RNA microarray assay and Western Blot. RESULTS: LCN DBS-treated animals experienced a significantly greater rate of motor recovery than untreated surgical controls, with treated animals showing enhanced expression of RNA and protein for excitability related genes, suppressed expression of pro-inflammatory genes, suppressed microglial and astrocytic activation, but proliferation of c-fos positive cells. Finally, our data suggest a possible role for anti-apoptotic effects with LCN DBS. CONCLUSION: LCN DBS enhanced the motor recovery following TBI, possibly by elevating the neuronal excitability at the perilesional area and mediating anti-apoptotic and anti-inflammatory effects.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Núcleos Cerebelares/fisiologia , Estimulação Encefálica Profunda/métodos , Modelos Animais de Doenças , Córtex Motor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Inflamação/fisiopatologia , Inflamação/terapia , Potenciação de Longa Duração/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...