Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 441: 138282, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199108

RESUMO

This study has redirected focus towards the untapped potential of millets, exploring their utilization as small-scale vegetables like sprouts and microgreens. This study assessed the metabolite profiles and therapeutic efficacy of barnyard millets as sprouts and microgreens for antioxidant, anti-diabetic, and bioaccessibility properties. Based on the study, sprouts contained 456.52 mg GE/g of starch and microgreens contained 470.04 mg GE/g of carbohydrates, whereas the gastric phase of microgreens showed 426.85 mg BSAE/g, 397.6 mg LE/g, 348.19 g RE/g, and 307.40 g AAE/g of proteins, amino acids, vitamin A and vitamin C respectively. Secondary metabolites were significantly concentrated in the microgreen stage which is responsible for their increased antioxidant and antidiabetic potential than sprouts. This study validated the therapeutic and nutritional value of millet sprouts and microgreens by demonstrating their significant nutritional composition.


Assuntos
Antioxidantes , Echinochloa , Antioxidantes/metabolismo , Echinochloa/química , Hipoglicemiantes , Vitaminas , Proteínas
2.
Appl Biochem Biotechnol ; 195(11): 6790-6808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36930407

RESUMO

Miliusa nilagirica, a rare tree species of Western Ghats, belongs to the Annonaceae family, a family with potential antioxidant and antidiabetic properties. This study is designed vividly to establish the relationship between the constituent phytochemicals and their hyperglycemic effects through the antioxidant traits of M. nilagirica in vitro. Phytochemical tests were conducted on dry powdered leaves and extracts of various methods to determine the existence of various constituents. The antidiabetic potential of leaf extracts was estimated by using the α-amylase inhibitory model and the antioxidant potential was estimated with various assays. The quantitative phytochemical screening of leaf parts shows the presence of carbohydrates (88.74 ± 0.65 mg GE/g sample), proteins (82.17 ± 2.52 mg BSAE/g sample), phenolics (40.44 ± 0.43 GAE/100 g), and flavonoids (66.05 ± 0.48 mg RE/g extract). Methanol extract of Soxhlet of M. nilagirica registered the strongest antioxidant activity in all assays, 75.66% inhibition (DPPH assay), 795.01 µmol/g (ABTS˙+ radical scavenging), 994.33 µmol/g (FRAP assay), 362.02 mg AAE/g extract (TAC assay), 47% inhibition (NO scavenging assay). In vitro α-amylase inhibition showed a highly noticeable reduction in ethyl acetate extract from Soxhlet (75.19%). HPLC and FTIR analyses on the extracts added strengths to the obtained results on the potentiality of M. nilagirica. From the results, it is evident that phytochemicals from M. nilagirica can be studied further, isolated, and incorporated as an alternative to synthetic supplements for hyperglycemia.


Assuntos
Hipoglicemiantes , Extratos Vegetais , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , alfa-Amilases , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...