Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793496

RESUMO

This study investigates the surface topography of microfinishing abrasive films and their machining capability on the Nimonic 80A superalloy, a high-performance nickel-based alloy commonly used in aerospace and gas turbine engine applications. Surface analysis was conducted on three abrasive films with nominal grain sizes of 30, 15, and 9 µm, exploring wear patterns, contact frequency, and distribution. To assess the distribution of grain apexes, Voronoi cells were employed. Results revealed distinct wear mechanisms, including torn abrasive grains and cracked bond surfaces, highlighting the importance of efficient chip removal mechanisms in microfinishing processes. Larger grain sizes exhibited fewer contacts with the workpiece but provided more storage space for machining products, while smaller grain sizes facilitated smoother surface finishes. The research demonstrated the effectiveness of microfinishing abrasive films in reducing surface irregularities. Additionally, surface analysis of worn abrasive tools provided insights into wear mechanisms and chip formation, with the segmentation of microchips contributing to efficient chip removal. These findings underscore the significance of selecting appropriate abrasive films and implementing effective chip removal mechanisms to optimize microfinishing processes and improve surface finishing quality in advanced material machining applications. It is worth emphasizing that no prior research has investigated the microfinishing of components crafted from Nimonic 80A utilizing abrasive films, rendering this study truly unique in its contribution to the field.

2.
Materials (Basel) ; 17(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38591557

RESUMO

In this study, the surface of new lapping films was analyzed, and the lapping finishing process was applied to RG7 tin bronze alloy. The research focused on examining lapping films with electrocorundum grains of nominal sizes 30, 12, and 9 µm, commonly used for achieving smooth surfaces. The manufacturing process involves placing abrasive grains and binder onto a polyester tape, resulting in a heterogeneous distribution of abrasive grains. The study investigates the impact of this random distribution on the performance of lapping films during material removal. Scanning electron microscopy was used to analyze the surface structure of abrasive films, revealing distinctive structures formed by the specific aggregation of abrasive grains. This study explores the influence of different nominal grain sizes on surface finish and aims to optimize lapping processes for diverse applications. The research also delves into microchip analysis, examining the products of the lapping film finishing process. Microchips were observed directly on the abrasive tool surface, revealing insights into their morphology and distribution. The chip segmentation frequency was determined, and they amounted to approximately 0.8 to 3 MHz; these are very high frequencies, which are unique for known chip-forming processes.

3.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612217

RESUMO

This study introduces innovative designs for abrasive tools aimed at enhancing surface finishing processes. Prototypes consisting of non-continuous abrasive films with discontinuous surface carriers and abrasive layers were developed to improve the efficiency and effectiveness of the smoothing process. Four distinct abrasive films with varying nominal grain sizes were fabricated to explore the versatility and efficacy of the prototypes. The results indicate that the incorporation of carrier irregularities significantly influences surface finishing processes, leading to improvements in material removal efficiency and surface quality. Longitudinal discontinuities facilitate faster removal of irregularities from workpiece materials, reducing the risk of deep scratches on surfaces. Additionally, this study highlights the importance of tool motion patterns in optimizing material removal processes and ensuring surface quality. The integration of carrier irregularities with additional oscillatory tool motion shows promise for further improving surface quality. These findings advance our understanding of abrasive machining processes and provide valuable insights for optimizing abrasive tool designs and machining strategies for enhanced surface finishing.

4.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673152

RESUMO

This article presents a comprehensive investigation into pressure rollers utilized in the microfinishing process, covering aspects such as design, experimental properties, compliance, and finite element simulation. Prototype pressure rollers with unconventional elastomer configurations were designed and analyzed to explore their effectiveness in achieving superior surface finishes. Experimental analysis and finite element simulations were conducted to gain insights into the performance and behavior of these pressure rollers under various loading conditions. This study addresses the validation of constitutive material models used in finite element simulations to ensure accuracy and reliability. The results indicate that the applied material model, validated through experimental analysis, accurately predicts pressure roller behavior. Finite element simulations reveal distinct contact zone patterns and stress distributions across the contact surfaces, highlighting the importance of considering deflection-induced variations in contact behavior. Additionally, the investigation evaluates the effectiveness of different pressure rollers in removing surface irregularities during the microfinishing process. Roller R3 demonstrates the highest efficacy in removing surface peaks, suggesting its potential for achieving superior surface finishes. Overall, this research contributes to the advancement of microfinishing techniques by providing insights into pressure roller design, performance, and behavior, thereby optimizing microfinishing processes to produce high-quality components. The urgency of this study arises from the growing need for exceptional surface finishes in various industrial sectors. With manufacturing industries increasingly pursuing high-precision components boasting flawless surface quality, the significance of microfinishing processes is highlighted.

5.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770235

RESUMO

The article presents research results related to assessing the possibilities of applying modern filtration methods to diagnosing measurement signals. The Fourier transformation does not always provide full information about the signal. It is, therefore, appropriate to complement the methodology with a modern multiscale method: the wavelet transformation. A hybrid combination of two algorithms results in revealing additional signal components, which are invisible in the spectrum in the case of using only the harmonic analysis. The tests performed using both simulated signals and the measured roundness profiles of rollers in rolling bearings proved the advantages of using a complex approach. A combination of the Fourier and wavelet transformations resulted in the possibility to identify the components of the signal, which directly translates into better diagnostics. The tests fill a research gap in terms of complex diagnostics and assessment of profiles, which is very important from the standpoint of the precision industry.

6.
Materials (Basel) ; 14(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771778

RESUMO

This paper presents the results of an experimental study to evaluate the possibility of using SLM additive technology to produce structures with specific surface morphological features. Qualitative and quantitative tests were conducted on samples fabricated by 3D printing from titanium (Ti6Al4V)-powder-based material and analysed in direct relation to the possibility of their use in medicine for the construction of femoral stem and models with a specific degree of porosity predicted by process-control in the self-decision-making 3D printing machine. This paper presents the results of the study, limitations of the method, recommendations that should be used in the design of finished products, and design proposals to support the fabrication process of 3D printers. Furthermore, the study contains an evaluation of how the printing direction affects the formation of certain structures on the printed surface. The research can be used in the development of 3D printing standardization, particularly in the consideration of process control and surface control.

7.
Materials (Basel) ; 13(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008129

RESUMO

The paper presents the results of tests of surface waviness of samples made in the powder bed fusion technology. The models were built using 316L steel-based powder with high corrosion resistance. The samples were placed on the construction platform at three different angles (0°, 45°, 90°) in XZ plane. Then, using an optical profilometer, the parameters of the geometric structure of the surface of the primary profile and the separated waviness component were measured. Analyzing the results of the test, it can be stated that the orientation of model arrangement has an impact on the quality of the technological surface texture, what has significance impact on wear processes and mechanical properties.

8.
Materials (Basel) ; 13(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947926

RESUMO

Recently, there is growing interest in optimisation of finishing process thanks to the technologies to follow online the wear of cutting tools. In the present paper, one of the cheapest and simplest non-contact methodologies is described in detail and investigated with robustness evaluation. To simulate the finishing operation of a die, in this study, two cavities were designed in AISI H13 steel. Different inserts corresponding to PVD-(Ti,Al)N coated cemented carbide tool were tested. The described methodology is easy to be applied in manufacturing cutting machining with the opportunity to be implemented on machining processes to follow reasonably wear process of cutting tools.

9.
Scanning ; 36(1): 76-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23630072

RESUMO

Pigmentation of paper induced by fungi is one of the most complex phenomenons because it involves living organisms growing on a heterogeneous paper substrate. A novel approach to the study of interfaces of fungi and paper in black stains produced by pigmented Dematiaceous fungi with meristematic growth was undertaken applying surface metrology techniques: confocal laser scanning microscope (CLSM) white-light, confocal chromatic aberration profilometer (LCA) and scanning electron microscope in variable pressure (SEM-VP); fungal morphology was examined with transmitted light microscopy (TLM). The role of paper topography and surface morphology in fungi-induced biodeterioration was investigated elucidating some of the dynamic interactions of fungi with paper, spatial distribution of biological deposits, inclusions in paper matrix, and patterns of fungal growth on paper thus contributing to a better understanding of biodeterioration of paper-based cultural heritage. So far, to the authors' knowledge, there are no published reports on the investigation of interfaces of bio-stains and paper utilizing surface metrology techniques.


Assuntos
Fungos/metabolismo , Micélio/metabolismo , Papel , Esporos Fúngicos/metabolismo , Arte , Biomassa , Fungos/citologia , Microscopia Confocal , Pigmentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...