Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 10(6): eadi1323, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324690

RESUMO

In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.

3.
Nat Commun ; 15(1): 1804, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413573

RESUMO

Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton's multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.

4.
Nano Lett ; 23(12): 5506-5513, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289669

RESUMO

Twisted bilayer graphene provides an ideal solid-state model to explore correlated material properties and opportunities for a variety of optoelectronic applications, but reliable, fast characterization of the twist angle remains a challenge. Here we introduce spectroscopic ellipsometric contrast microscopy (SECM) as a tool for mapping twist angle disorder in optically resonant twisted bilayer graphene. We optimize the ellipsometric angles to enhance the image contrast based on measured and calculated reflection coefficients of incident light. The optical resonances associated with van Hove singularities correlate well to Raman and angle-resolved photoelectron emission spectroscopy, confirming the accuracy of SECM. The results highlight the advantages of SECM, which proves to be a fast, nondestructive method for characterization of twisted bilayer graphene over large areas, unlocking process, material, and device screening and cross-correlative measurement potential for bilayer and multilayer materials.

5.
Nature ; 608(7923): 499-503, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978130

RESUMO

Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1-7, the confinement of excitons in artificial moiré lattices8-13 and the formation of exotic quantum phases14-18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton-phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.

6.
Nano Lett ; 22(12): 4897-4904, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35649249

RESUMO

Comprehending far-from-equilibrium many-body interactions is one of the major goals of current ultrafast condensed matter physics research. Here, a particularly interesting but barely understood situation occurs during a strong optical excitation, where the electron and phonon systems can be significantly perturbed and the quasiparticle distributions cannot be described with equilibrium functions. In this work, we use time- and angle-resolved photoelectron spectroscopy to study such far-from-equilibrium many-body interactions for the prototypical material graphene. In accordance with theoretical simulations, we find remarkable transient renormalizations of the quasiparticle self-energy caused by the photoinduced nonequilibrium conditions. These observations can be understood by ultrafast scatterings between nonequilibrium electrons and strongly coupled optical phonons, which signify the crucial role of ultrafast nonequilibrium dynamics on many-body interactions. Our results advance the understanding of many-body physics in extreme conditions, which is important for any endeavor to optically manipulate or create non-equilibrium states of matter.

7.
Rev Sci Instrum ; 92(6): 065107, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243510

RESUMO

We present a novel setup to measure the transverse magneto-optical Kerr effect in the extreme ultraviolet spectral range based on a fiber laser amplifier system with a repetition rate between 100 and 300 kHz, which we use to measure element-resolved demagnetization dynamics. The setup is equipped with a strong electromagnet and a cryostat, allowing measurements between 10 and 420 K using magnetic fields up to 0.86 T. The performance of our setup is demonstrated by a set of temperature- and time-dependent magnetization measurements with elemental resolution.

8.
J Phys Chem C Nanomater Interfaces ; 124(43): 23579-23587, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33193941

RESUMO

The high flexibility of organic molecules offers great potential for designing the optical properties of optically active materials for the next generation of optoelectronic and photonic applications. However, despite successful implementations of molecular materials in today's display and photovoltaic technology, many fundamental aspects of the light-to-charge conversion in molecular materials have still to be uncovered. Here, we focus on the ultrafast dynamics of optically excited excitons in C60 thin films depending on the molecular coverage and the light polarization of the optical excitation. Using time- and momentum-resolved photoemission with femtosecond extreme ultraviolet (fs-XUV) radiation, we follow the exciton dynamics in the excited states while simultaneously monitoring the signatures of the excitonic charge character in the renormalization of the molecular valence band structure. Optical excitation with visible light results in the instantaneous formation of charge-transfer (CT) excitons, which transform stepwise into Frenkel-like excitons at lower energies. The number and energetic position of the CT and Frenkel-like excitons within this cascade process are independent of the molecular coverage and the light polarization of the optical excitation. In contrast, the depopulation times of the CT and Frenkel-like excitons depend on the molecular coverage, while the excitation efficiency of CT excitons is determined by the light polarization. Our comprehensive study reveals the crucial role of CT excitons for the excited-state dynamics of homomolecular fullerene materials and thin films.

9.
Rev Sci Instrum ; 91(6): 063905, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611056

RESUMO

Recent progress in laser-based high-repetition rate extreme ultraviolet (EUV) light sources and multidimensional photoelectron spectroscopy enables the build-up of a new generation of time-resolved photoemission experiments. Here, we present a setup for time-resolved momentum microscopy driven by a 1 MHz fs EUV table-top light source optimized for the generation of 26.5 eV photons. The setup provides simultaneous access to the temporal evolution of the photoelectron's kinetic energy and in-plane momentum. We discuss opportunities and limitations of our new experiment based on a series of static and time-resolved measurements on graphene.

10.
Sci Adv ; 6(3): eaaz1100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010777

RESUMO

Heusler compounds are exciting materials for future spintronics applications because they display a wide range of tunable electronic and magnetic interactions. Here, we use a femtosecond laser to directly transfer spin polarization from one element to another in a half-metallic Heusler material, Co2MnGe. This spin transfer initiates as soon as light is incident on the material, demonstrating spatial transfer of angular momentum between neighboring atomic sites on time scales < 10 fs. Using ultrafast high harmonic pulses to simultaneously and independently probe the magnetic state of two elements during laser excitation, we find that the magnetization of Co is enhanced, while that of Mn rapidly quenches. Density functional theory calculations show that the optical excitation directly transfers spin from one magnetic sublattice to another through preferred spin-polarized excitation pathways. This direct manipulation of spins via light provides a path toward spintronic devices that can operate on few-femtosecond or faster time scales.

11.
Nat Commun ; 10(1): 1470, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931921

RESUMO

Organic photovoltaic devices operate by absorbing light and generating current. These two processes are governed by the optical and transport properties of the organic semiconductor. Despite their common microscopic origin-the electronic structure-disclosing their dynamical interplay is far from trivial. Here we address this issue by time-resolved photoemission to directly investigate the correlation between the optical and transport response in organic materials. We reveal that optical generation of non-interacting excitons in a fullerene film results in a substantial redistribution of all transport levels (within 0.4 eV) of the non-excited molecules. As all observed dynamics evolve on identical timescales, we conclude that optical and transport properties are completely interlinked. This finding paves the way for developing novel concepts for transport level engineering on ultrafast time scales that could lead to novel functional optoelectronic devices.

12.
Sci Adv ; 3(12): eaao4641, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29250601

RESUMO

This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.

13.
Proc Natl Acad Sci U S A ; 114(27): E5300-E5307, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630331

RESUMO

Electron-electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening. Here, we use sequences of attosecond pulses to directly measure electron-electron interactions in different bands of different materials with both simple and complex Fermi surfaces. By extracting the time delays associated with photoemission we show that the lifetime of photoelectrons from the d band of Cu are longer by ∼100 as compared with those from the same band of Ni. We attribute this to the enhanced electron-electron scattering in the unfilled d band of Ni. Using theoretical modeling, we can extract the contributions of electron-electron scattering and screening in different bands of different materials with both simple and complex Fermi surfaces. Our results also show that screening influences high-energy photoelectrons (≈20 eV) significantly less than low-energy photoelectrons. As a result, high-energy photoelectrons can serve as a direct probe of spin-dependent electron-electron scattering by neglecting screening. This can then be applied to quantifying the contribution of electron interactions and screening to low-energy excitations near the Fermi level. The information derived here provides valuable and unique information for a host of quantum materials.

14.
J Phys Condens Matter ; 29(24): 244002, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28510535

RESUMO

Magnetization dynamics on a femtosecond timescale has been observed for a huge variety of magnetic structures. However, the influence of different excitation photon energies has not been studied in detail yet. In our time-resolved magneto-optical Kerr effect setup we excite a Nickel bulk system with 1.55 and 3.1 eV, respectively, leading to different remagnetization dynamics depending on the chosen photon energy. Furthermore we complement our experimental data with a theoretical approach applying appropriate Boltzmann collision integrals including the density of states of Nickel. The comparison between the experimental data and the theoretical approach indicates that photon-energy dependent transport processes play a major role in this setup.

15.
Sci Adv ; 3(3): e1602094, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28378016

RESUMO

The evolution of the electronic band structure of the simple ferromagnets Fe, Co, and Ni during their well-known ferromagnetic-paramagnetic phase transition has been under debate for decades, with no clear and even contradicting experimental observations so far. Using time- and spin-resolved photoelectron spectroscopy, we can make a movie on how the electronic properties change in real time after excitation with an ultrashort laser pulse. This allows us to monitor large transient changes in the spin-resolved electronic band structure of cobalt for the first time. We show that the loss of magnetization is not only found around the Fermi level, where the states are affected by the laser excitation, but also reaches much deeper into the electronic bands. We find that the ferromagnetic-paramagnetic phase transition cannot be explained by a loss of the exchange splitting of the spin-polarized bands but instead shows rapid band mirroring after the excitation, which is a clear signature of extremely efficient ultrafast magnon generation. Our result helps to understand band structure formation in these seemingly simple ferromagnetic systems and gives first clear evidence of the transient processes relevant to femtosecond demagnetization.

16.
Nano Lett ; 16(11): 6832-6837, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27723356

RESUMO

The design of noble-metal plasmonic devices and nanocircuitry requires a fundamental understanding and control of the interference of plasmonic modes. Here we report the first visualization of the propagation and interference of guided modes in a showcase plasmonic nanocircuit using normal-incidence nonlinear two-photon photoemission electron microscopy (PEEM). We demonstrate that in contrast to the commonly used grazing-incidence illumination scheme, normal-incidence PEEM provides a direct image of the structure's near-field intensity distribution due to the absence of beating patterns and despite the transverse character of the plasmonic modes. Based on a simple heuristic numerical model for the photoemission yield, we are able to model all experimental findings if global plane wave illumination and coupling to multiple input/output ports, and the resulting interference effects are accounted for.

17.
Nat Commun ; 6: 10167, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658826

RESUMO

Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2-type invariants of gold can be well-defined to characterize a TI. Further, our ARPES measurement validates TDSSs by detecting the dispersion of unoccupied surface states. The same TDSSs are also recognized on surfaces of other well-known noble metals (for example, silver, copper, platinum and palladium), which shines a new light on these long-known surface states.

18.
Nano Lett ; 15(9): 6022-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26262825

RESUMO

We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.

19.
Phys Rev Lett ; 110(19): 197201, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23705737

RESUMO

The study of ultrafast dynamics in magnetic materials provides rich opportunities for greater fundamental understanding of correlated phenomena in solid-state matter, because many of the basic microscopic mechanisms involved are as-yet unclear and are still being uncovered. Recently, two different possible mechanisms have been proposed to explain ultrafast laser induced magnetization dynamics: spin currents and spin-flip scattering. In this work, we use multilayers of Fe and Ni with different metals and insulators as the spacer material to conclusively show that spin currents can have a significant contribution to optically induced magnetization dynamics, in addition to spin-flip scattering processes. Moreover, we can control the competition between these two processes, and in some cases completely suppress interlayer spin currents as a sample undergoes rapid demagnetization. Finally, by reversing the order of the Fe/Ni layers, we experimentally show that spin currents are directional in our samples, predominantly flowing from the top to the bottom layer.

20.
Nat Commun ; 3: 1037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948819

RESUMO

Uncovering the physical mechanisms that govern ultrafast charge and spin dynamics is crucial for understanding correlated matter as well as the fundamental limits of ultrafast spin-based electronics. Spin dynamics in magnetic materials can be driven by ultrashort light pulses, resulting in a transient drop in magnetization within a few hundred femtoseconds. However, a full understanding of femtosecond spin dynamics remains elusive. Here we spatially separate the spin dynamics using Ni/Ru/Fe magnetic trilayers, where the Ni and Fe layers can be ferro- or antiferromagnetically coupled. By exciting the layers with a laser pulse and probing the magnetization response simultaneously but separately in Ni and Fe, we surprisingly find that optically induced demagnetization of the Ni layer transiently enhances the magnetization of the Fe layer when the two layer magnetizations are initially aligned parallel. Our observations are explained by a laser-generated superdiffusive spin current between the layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...