Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352290

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is widely used in both research and clinical settings to modulate human brain function and behavior through the engagement of the mechanisms of plasticity. Based upon experiments using single-pulse TMS as a probe, the physiologic mechanism of these effects is often assumed to be via changes in cortical excitability, with 10 Hz rTMS increasing and 1 Hz rTMS decreasing the excitability of the stimulated region. However, the reliability and reproducibility of these rTMS protocols on cortical excitability across and within individual subjects, particularly in comparison to robust sham stimulation, have not been systematically examined. OBJECTIVES: In a cohort of 28 subjects (39 ± 16 years), we report the first comprehensive study to (1) assess the neuromodulatory effects of traditional 1 Hz and 10 Hz rTMS on corticospinal excitability against both a robust sham control, and two other widely used patterned rTMS protocols (intermittent theta burst stimulation, iTBS; and continuous theta burst stimulation, cTBS), and (2) determine the reproducibility of all rTMS protocols across identical repeat sessions. RESULTS: At the group level, neither 1 Hz nor 10 Hz rTMS significantly modulated corticospinal excitability. 1 Hz and 10 Hz rTMS were also not significantly different from sham and both TBS protocols. Reproducibility was poor for all rTMS protocols except for sham. Importantly, none of the real rTMS and TBS protocols demonstrated greater neuromodulatory effects or reproducibility after controlling for potential experimental factors including baseline corticospinal excitability, TMS coil deviation and the number of individual MEP trials. CONCLUSIONS: These results call into question the effectiveness and reproducibility of widely used rTMS techniques for modulating corticospinal excitability, and suggest the need for a fundamental rethinking regarding the potential mechanisms by which rTMS affects brain function and behavior in humans.


Assuntos
Excitabilidade Cortical , Córtex Motor , Humanos , Estimulação Magnética Transcraniana/métodos , Reprodutibilidade dos Testes , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia
2.
Psychopharmacology (Berl) ; 239(8): 2377-2394, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35391547

RESUMO

RATIONALE: The nature and predictors of insensitivity to aversive consequences of heroin + cocaine polysubstance use are not well characterized. OBJECTIVES: Translational methods incorporating a tightly controlled animal model of drug self-administration and measures of inhibitory control and avoidance behavior might be helpful for clarifying this issue. METHODS: The key approach for distinguishing potential contributions of pre-existing inhibitory control deficits vs. drug use history in meditating insensitivity to aversive consequences was comparison of two rat strains: Wistar (WIS/Crl), an outbred strain, and the spontaneously hypertensive rat (SHR/NCrl), an inbred strain shown previously to exhibit heightened cocaine and heroin self-administration and poor inhibitory control relative to WIS/Crl. RESULTS: In separate tasks, SHR/NCrl displayed greater impulsive action and compulsive-like behavior than WIS/Crl prior to drug exposure. Under two different schedules of drug delivery, SHR/NCrl self-administered more cocaine than WIS/Crl, but self-administered a similar amount of heroin + cocaine as WIS/Crl. When half the session cycles were punished by random foot shock, SHR/NCrl initially were less sensitive to punishment than WIS/Crl when self-administering cocaine, but were similarly insensitive to punishment when self-administering heroin + cocaine. Based on correlation analyses, only trait impulsivity predicted avoidance capacity in rats self-administering cocaine and receiving yoked-saline. In contrast, only amount of drug use predicted avoidance capacity in rats self-administering heroin + cocaine. Additionally, baseline drug seeking and taking predicted punishment insensitivity in rats self-administering cocaine or heroin + cocaine. CONCLUSIONS: Based on the findings revealed in this animal model, human laboratory research concerning the nature and predictors of insensitivity to aversive consequences in heroin and cocaine polysubstance vs. monosubstance users is warranted.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Heroína/farmacologia , Humanos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Autoadministração
3.
Behav Brain Res ; 411: 113406, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097899

RESUMO

Forward genetic mapping of F2 crosses between closely related substrains of inbred rodents - referred to as a reduced complexity cross (RCC) - is a relatively new strategy for accelerating the pace of gene discovery for complex traits, such as drug addiction. RCCs to date were generated in mice, but rats are thought to be optimal for addiction genetic studies. Based on past literature, one inbred Spontaneously Hypertensive Rat substrain, SHR/NCrl, is predicted to exhibit a distinct behavioral profile as it relates to cocaine self-administration traits relative to another substrain, SHR/NHsd. Direct substrain comparisons are a necessary first step before implementing an RCC. We evaluated model traits for cocaine addiction risk and cocaine self-administration behaviors using a longitudinal within-subjects design. Impulsive-like and compulsive-like traits were greater in SHR/NCrl than SHR/NHsd, as were reactivity to sucrose reward, sensitivity to acute psychostimulant effects of cocaine, and cocaine use studied under fixed-ratio and tandem schedules of cocaine self-administration. Compulsive-like behavior correlated with the acute psychostimulant effects of cocaine, which in turn correlated with cocaine taking under the tandem schedule. Compulsive-like behavior also was the best predictor of cocaine seeking responses. Heritability estimates indicated that 22 %-40 % of the variances for the above phenotypes can be explained by additive genetic factors, providing sufficient genetic variance to conduct genetic mapping in F2 crosses of SHR/NCrl and SHR/NHsd. These results provide compelling support for using an RCC approach in SHR substrains to uncover candidate genes and variants that are of relevance to cocaine use disorders.


Assuntos
Comportamento Aditivo/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Ratos Endogâmicos SHR/psicologia , Animais , Comportamento Aditivo/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Modelos Animais de Doenças , Masculino , Fenótipo , Ratos , Fatores de Risco , Autoadministração , Especificidade da Espécie
4.
Behav Brain Res ; 395: 112839, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750464

RESUMO

Brief interventions of environmental enrichment (EE) or the glycine transporter-1 inhibitor Org24598 administered with cocaine-cue extinction training were shown previously to inhibit reacquisition of cocaine self-administration in male rats trained to self-administer a moderate 0.3 mg/kg dose of cocaine. Determining how EE and Org24598 synergize in combination in an animal model of cue exposure therapy is novel. Important changes made in this investigation were increasing the cocaine training dose to 1.0 mg/kg and determining sex differences. Adult male and female rats self-administering 1.0 mg/kg cocaine for 35-40 daily sessions exhibited an addiction-like phenotype under a second-order schedule of cocaine delivery and cue presentation. Rats next underwent 6 weekly extinction training sessions for which treatments consisted of EE or NoEE and Vehicle or Org24598 (3.0 mg/kg in males; 3.0 or 7.5 mg/kg in females). Rats then were tested for reacquisition of cocaine self-administration for 15 daily sessions. In males, the combined EE +3.0 mg/kg Org24598 treatment facilitated extinction learning and inhibited reacquisition of cocaine self-administration to a greater extent than no treatment and to individual EE or 3.0 mg/kg Org24598 treatments. In females, EE +7.5 mg/kg Org24598 facilitated extinction learning, but did not inhibit reacquisition of cocaine self-administration. Thus, there were sex differences in the ability of EE + Org24598 administered in conjunction with extinction training to inhibit cocaine relapse in rats exhibiting an addiction-like phenotype. These findings suggest that this multimodal treatment approach might be a feasible option during cue exposure therapy in cocaine-dependent men, but not women.


Assuntos
Comportamento Aditivo/psicologia , Transtornos Relacionados ao Uso de Cocaína/terapia , Prevenção Secundária/métodos , Animais , Terapia Comportamental/métodos , Comportamento Aditivo/prevenção & controle , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Modelos Animais de Doenças , Extinção Psicológica/efeitos dos fármacos , Feminino , Terapia Implosiva/métodos , Aprendizagem/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Autoadministração , Fatores Sexuais
5.
J Neurosci ; 39(16): 3057-3069, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30777885

RESUMO

An animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food. In this study, we examined the taste-evoked responses and spatial firing properties of single units in the dorsal CA1 hippocampal region as male rats received a battery of taste stimuli differing in both chemical composition and palatability within a specific spatial context. We identified a subset of hippocampal neurons that responded to tastes, some of which were place cells. These taste and place responses had a distinct interaction: taste-responsive cells tended to have less spatially specific firing fields and place cells only responded to tastes delivered inside their place field. Like neurons in the amygdala and lateral hypothalamus, hippocampal neurons discriminated between tastes predominantly on the basis of palatability, with taste selectivity emerging concurrently with palatability-relatedness; these responses did not reflect movement or arousal. However, hippocampal taste responses emerged several hundred milliseconds later than responses in other parts of the taste system, suggesting that the hippocampus does not influence real-time taste decisions, instead associating the hedonic value of tastes with a particular context. This incorporation of taste responses into existing hippocampal maps could be one way that animals use past experience to locate food sources.SIGNIFICANCE STATEMENT Finding food is essential for animals' survival and taste and context memory are often linked. Although hippocampal responses to space and contexts have been well characterized, little is known about how the hippocampus responds to tastes. Here, we identified a subset of hippocampal neurons that discriminated between tastes based on palatability. Cells with stronger taste responses typically had weaker spatial responses and taste responses were confined to place cells' firing fields. Hippocampal taste responses emerged later than in other parts of the taste system, suggesting that the hippocampus does not influence taste decisions, but rather associates the hedonic value of tastes consumed within a particular context. This could be one way that animals use past experience to locate food sources.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Percepção Gustatória/fisiologia , Animais , Masculino , Memória/fisiologia , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...