Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 517(7536): 589-91, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25539085

RESUMO

The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

2.
Nature ; 478(7369): 356-9, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012393

RESUMO

In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.

3.
Nature ; 462(7276): 1032-5, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20033042

RESUMO

Blue straggler stars lie on or near the main sequences of star clusters (all members of which formed around the same time), but typically are more luminous than the turn-off stars and therefore long ago should have evolved off the main sequence to become giants and white dwarfs. They are thought to derive from normal main-sequence stars that have undergone a recent increase in mass. Statistical evidence indicates that in globular star clusters the blue stragglers probably form from binary stars. The specific formation processes, such as mass transfer, mergers or stellar collisions during dynamical encounters of binary stars, remain unresolved. Here we report that 16 of the 21 blue stragglers (76 per cent) in the old (7-Gyr; ref. 2) open cluster NGC 188 are currently in binary systems, a frequency three times that found among normal solar-type main-sequence stars. These blue straggler binaries have a remarkable period-eccentricity distribution, with all but three having orbital periods of approximately 1,000 days. Moreover, these stars are rotating faster than normal main-sequence stars of the same surface temperatures. These data show that most, and possibly all, blue stragglers derive from multiple-star systems, and indicate that the several formation processes operate simultaneously. We suggest that rapid rotation of blue stragglers may place upper limits on their ages.

4.
Nature ; 453(7198): 1079-82, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18563159

RESUMO

The mass and chemical composition of a star are the primary determinants of its basic physical properties-radius, temperature and luminosity-and how those properties evolve with time. Accordingly, two stars born at the same time, from the same natal material and with the same mass, are 'identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41 +/- 0.01 solar masses, identical to within 2 per cent. Here we report that these twin stars have surface temperatures differing by approximately 300 K ( approximately 10 per cent) and luminosities differing by approximately 50 per cent, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10 per cent. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system. Our findings reveal cosmic limits on the age synchronization of young binary stars, often used as tests for the age calibrations of star-formation models.

5.
Nature ; 440(7082): 311-4, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16541067

RESUMO

Brown dwarfs are considered to be 'failed stars' in the sense that they are born with masses between the least massive stars (0.072 solar masses, M(o)) and the most massive planets (approximately 0.013M(o)); they therefore serve as a critical link in our understanding of the formation of both stars and planets. Even the most fundamental physical properties of brown dwarfs remain, however, largely unconstrained by direct measurement. Here we report the discovery of a brown-dwarf eclipsing binary system, in the Orion Nebula star-forming region, from which we obtain direct measurements of mass and radius for these newly formed brown dwarfs. Our mass measurements establish both objects as brown dwarfs, with masses of 0.054 +/- 0.005M(o) and 0.034 +/- 0.003M(o). At the same time, with radii relative to the Sun's of 0.669 +/- 0.034R(o) and 0.511 +/- 0.026R(o), these brown dwarfs are more akin to low-mass stars in size. Such large radii are generally consistent with theoretical predictions for young brown dwarfs in the earliest stages of gravitational contraction. Surprisingly, however, we find that the less-massive brown dwarf is the hotter of the pair; this result is contrary to the predictions of all current theoretical models of coeval brown dwarfs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...