Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(15): 6616-6625, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569100

RESUMO

Four new compositionally complex perovskites with multiple (four or more) cations on the B site of the perovskites have been studied. The materials have the general formula La0.5Sr2.5(M)2O7-δ (M = Ti, Mn, Fe, Co, and Ni) and have been synthesized via conventional solid-state synthesis. The compounds are the first reported examples of compositionally complex n = 2 Ruddlesden-Popper perovskites. The structure and properties of the materials have been determined using powder X-ray diffraction, neutron diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and magnetometry. The materials are isostructural and adopt the archetypal I4/mmm space group with the following unit cell parameters: a ∼ 3.84 Å, and c ∼ 20.1 Å. The measured compositions from energy dispersive X-ray spectroscopy were La0.51(2)Sr2.57(7)Ti0.41(2)Mn0.41(2)Fe0.39(2)Co0.38(1)Ni0.34(1)O7-δ, La0.59(4)Sr2.29(23)Mn0.58(5)Fe0.56(6)Co0.55(6)Ni0.42(4)O7-δ, La0.54(2)Sr2.49(13)Mn0.41(2)Fe0.81(5)Co0.39(3)Ni0.36(3)O7-δ, and La0.53(4)Sr2.55(19)Mn0.67(6)Fe0.64(5)Co0.31(2)Ni0.30(3)O7-δ. No magnetic contribution is observed in the neutron diffraction data, and magnetometry indicates a spin glass transition at low temperatures.

2.
Inorg Chem ; 63(11): 5040-5051, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38428017

RESUMO

The effect of Eu doping in the Tsai quasicrystal (QC) GdCd7.88 and its periodic 1/1 approximant crystal (AC) GdCd6 are investigated. This represents the first synthesis of Eu-containing stable QC samples, where three samples with the final composition Gd1-xEuxCd7.6±α at Eu doping concentrations x = 0.06, 0.13, and 0.19 are obtained (α ∼ 0.2). They are compared to two 1/1 ACs with compositions Gd1-xEuxCd6 (x = 0.12, 0.16). In addition, a new type of 1/1 AC, differing only by the inclusion of extra Cd sites unique to the Eu4Cd25 1/1 AC, has been discovered and synthesized for the concentrations Gd1-xEuxCd6+δ (x = 0.25, 0.33, 0.45, 0.69, 0.73, and 0 < δ ≤ 0.085). Due to the preferred cube morphology of its single grains, we refer to them as c-type 1/1 ACs and to the conventional standard ones as s-type. In both QCs and s-type ACs, the Eu content appears to saturate at a concentration of ∼20%. On the other hand, any Gd| Eu ratio is allowed in the c-type ACs, varying continuously between GdCd6 and Eu4Cd25. We describe and contrast the changes in composition, atomic structure, specific heat, and magnetic properties induced by Eu doping in the quasicrystalline phase and the s-type and c-type 1/1 ACs. By comparing our results to the literature data, we propose that the occupancy of the extra Cd sites can be used to predict the stability of Tsai-type quasicrystalline phases.

3.
Phys Chem Chem Phys ; 26(7): 6325-6334, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38314612

RESUMO

A set of ∼9 nm CoFe2O4 nanoparticles substituted with Zn2+ and Ni2+ was prepared by thermal decomposition of metallic acetylacetonate precursors to correlate the effects of replacement of Co2+ with the resulting magnetic properties. Due to the distinct selectivity of these cations for the spinel ferrite crystal sites, we show that it is possible to tailor the magnetic anisotropy, saturation magnetization, and interparticle interactions of the nanoparticles during the synthesis stage. This approach unlocks new possibilities for enhancing the performance of spinel ferrite nanoparticles in specific applications. Particularly, our study shows that the replacement of Co2+ by 48% of Zn2+ ions led to an increase in saturation magnetization of approximately 40% from ∼103 A m2 kg-1 to ∼143 A m2 kg-1, whereas the addition of Ni2+ at a similar percentage led to an ∼30% decrease in saturation magnetization to 68-72 A m2 kg-1. The results of calculations based on the two-sublattice Néel model of magnetization match the experimental findings, demonstrating the model's effectiveness in the strategic design of spinel ferrite nanoparticles with targeted magnetic properties through doping/inversion degree engineering.

4.
Small ; 20(10): e2304152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888807

RESUMO

The magnetic coupling of a set of SrFe12 O19 /CoFe2 O4 nanocomposites is investigated. Advanced electron microscopy evidences the structural coherence and texture at the interfaces of the nanostructures. The fraction of the lower anisotropy phase (CoFe2 O4 ) is tuned to assess the limits that define magnetically exchange-coupled interfaces by performing magnetic remanence, first-order reversal curves (FORCs), and relaxation measurements. By combining these magnetometry techniques and the structural and morphological information from X-ray diffraction, electron microscopy, and Mössbauer spectrometry, the exchange intergranular interaction is evidenced, and the critical thickness within which coupled interfaces have a uniform reversal unraveled.

5.
Phys Chem Chem Phys ; 25(40): 27817-27828, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814895

RESUMO

A set of non-stoichiometric Zn-Co-ferrite nanoparticles (NPs) was prepared by thermal decomposition of metallic complexes, in the presence of oleic acid, and, after a ligand-exchange process, was coated by a hydrophilic surfactant: these NPs were used as seeds in a sol-gel self-combustion synthesis to prepare nanocomposites (NCs) with a fixed weight ratio. Our focus here is the development of an efficient synthetic approach to control the magnetic coupling between a hard-magnetic matrix (Sr-ferrite) and NPs. The physico-chemical synthetic conditions (temperature, pH, colloidal stability) were optimized in order to tune their effect on the final particles' agglomeration in the matrix. We demonstrate that our synthetic approach is a novel way to produce strongly magnetically coupled NCs, where the final extrinsic properties could be tuned by controlling (i) the agglomeration of seeds in the matrix and (ii) their elemental doping.

6.
Small ; 18(28): e2106762, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35689307

RESUMO

Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (Edd ) to nanoparticle anisotropy (Kef V, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef  is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents "marginal" features. Thus, a threshold of Kef V/Edd  ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX (interacting)/TMAX (non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.


Assuntos
Magnetismo , Nanopartículas , Anisotropia , Cobalto , Transição de Fase
7.
Inorg Chem ; 61(10): 4322-4334, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225597

RESUMO

Investigations of reaction mixtures REx(Au0.79Si0.21)100-x (RE = Y and Gd) yielded the compounds REAu3Si which adopt a new structure type, referred to as GdAu3Si structure (tP80, P42/mnm, Z = 16, a = 12.8244(6)/12.7702(2) Å, and c = 9.0883(8)/9.0456(2) Å for GdAu3Si/YAu3Si, respectively). REAu3Si was afforded as millimeter-sized faceted crystal specimens from solution growth employing melts with composition RE18(Au0.79Si0.21)82. In the GdAu3Si structure, the Au and Si atoms are strictly ordered and form a framework built of corner-connected, Si-centered, trigonal prismatic units SiAu6. RE atoms distribute on 3 crystallographically different sites and each attain a 16-atom coordination by 12 Au and 4 Si atoms. These 16-atom polyhedra commonly fill the space of the unit cell. The physical properties of REAu3Si were investigated by heat capacity, electrical resistivity, and magnetometry techniques and are discussed in the light of theoretical predictions. YAu3Si exhibits superconductivity around 1 K, whereas GdAu3Si shows a complex magnetic ordering, likely related to frustrated antiferromagnets exhibiting chiral spin textures. GdAu3Si-type phases with interesting magnetic and transport properties may exist in an extended range of ternary RE-Au-Si systems, similar to the compositionally adjacent cubic 1/1 approximants RE(Au,Si)∼6.

8.
Sci Rep ; 11(1): 23307, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857873

RESUMO

The magnetic properties of SrFe12O19 (SFO) hard hexaferrites are governed by the complex relation to its microstructure, determining their relevance for permanent magnets´ applications. A set of SFO nanoparticles obtained by sol-gel self-combustion synthesis was selected for an in-depth structural X-Rays powder diffraction (XRPD) characterization by means of G(L) line-profile analysis. The obtained crystallites´ size distribution reveal a clear dependence of the size along the [001] direction on the synthesis approach, resulting in the formation of platelet-like crystallites. In addition, the size of the SFO nanoparticles was determined by transmission electron microscopy (TEM) analysis and the average number of crystallites within a particle was estimated. These results have been evaluated to illustrate the formation of single-domain state below a critical value, and the activation volume was derived from time dependent magnetization measurements, aiming to clarify the reversal magnetization process of hard magnetic materials.

9.
Phys Rev Lett ; 125(11): 117206, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975979

RESUMO

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.

10.
Inorg Chem ; 59(13): 9152-9162, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525660

RESUMO

Tsai-type quasicrystals and approximants are distinguished by a cluster unit made up of four concentric polyhedral shells that surround a tetrahedron at the center. Here we show that for Tsai-type 1/1 approximants in the RE-Au-Si systems (RE = Gd, Tb, Ho) the central tetrahedron of the Tsai clusters can be systematically replaced by a single RE atom. The modified cluster is herein termed a "pseudo-Tsai cluster" and represents, in contrast to the conventional Tsai cluster, a structural motif without internal symmetry breaking. For each system, single-phase samples of both pseudo-Tsai and Tsai-type 1/1 approximants were independently prepared as millimeter-sized, faceted, single crystals using the self-flux synthesis method. The full replacement of tetrahedral moieties by RE atoms in the pseudo-Tsai 1/1 approximants was ascertained by a combination of single-crystal and powder diffraction studies, as well as energy dispersive X-ray spectroscopy (EDX) analyses with a scanning electron microscope (SEM). Differential scanning calorimetry (DSC) studies revealed distinctly higher decomposition temperatures, by 5-35 K, for the pseudo-Tsai phases. Furthermore, the magnetic properties of pseudo-Tsai phases are profoundly and consistently different from the Tsai counterparts. The onset temperatures of magnetic ordering (Tmag) are lowered in the pseudo-Tsai phases by ∼30% from 24 to 17 K, 11.5 to 8 K, and 5 to 3.5 K in the Gd-Au-Si, Tb-Au-Si, and Ho-Au-Si systems, respectively. In addition, the Tb-Au-Si and Ho-Au-Si systems exhibit some qualitative changes in their magnetic ordering, indicating decisive changes in the magnetic state/structure by a moment-bearing atom at the cluster center.

11.
Nanotechnology ; 31(2): 025707, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603864

RESUMO

Over the last two decades, iron oxide based nanoparticles ferrofluids have attracted significant attention for a wide range of applications. For the successful use of these materials in biotechnology and energy, surface coating and specific functionalization is critical to achieve high dispersibility and colloidal stability of the nanoparticles in the ferrofluids. In view of this, the magnetic behavior of clusters of ultra-small MnFe2O4 nanoparticles covered by bovine serum albumin, which is known as a highly biocompatible and environmentally friendly surfactant, is investigated by magnetization measurements, and numerical simulations at an atomic and mesoscopic scale. The coating process with albumin produces a change in the structure, actual size and shape distribution of clusters of exchange coupled particles, giving rise to a distribution of blocking temperatures. The coated system exhibits a superspin glass (SSG) behavior with the SSG freezing temperatures similar to the uncoated ones, providing evidence that the strength of the dipolar interactions is not affected by the presence of the albumin. The DFT calculations show that the albumin coating reduces the surface anisotropy and the saturation magnetization in the nanoparticles leading to lower values of the coercive field in agreement with the experimental findings. Our results clearly demonstrate that the albumin coated clusters of MnFe2O4 particles are ideal systems for energy and biomedical applications since colloidal and thermal stability as well as biosafety is obtained through the albumin coating.

12.
Chem Commun (Camb) ; 55(80): 12000-12003, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31524904

RESUMO

In this study, the bandgap energy of the multiferroic oxide Mn3TeO6 is successfully reduced by ∼39% from 3.15 eV to 1.86 eV, accompanied by a phase transition at high pressures. The high-pressure phase with smaller bandgap energy is quenchable to ambient conditions and represents a promising light-harvesting material for photovoltaic applications.

13.
Dalton Trans ; 46(30): 9995-10002, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28726886

RESUMO

A facile synthesis of 3d-metal based electro-catalysts directly incorporated into a carbon support was carried out by γ-radiation. Transition metals of period 4, i.e. Ni and Co, were precipitated and reduced from their respective salt solutions. The obtained materials were characterized by XRD, SEM, SQUID and the BET methods. Thereafter, the electrodes for fuel cells were fabricated out of synthesized material and their electrochemical performance for the oxygen reduction reaction in 6 M KOH was measured. Although the concentrations of Co and Ni in the electrode material were low (3.4% Co and 0.4% Ni) after reduction by irradiation, both the Ni and Co-based gas diffusion electrodes showed high catalytic activity for oxygen reduction both at room temperature and at 60 °C.

14.
Inorg Chem ; 55(6): 2791-805, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26954581

RESUMO

Single crystals of the multiferroic double-perovskite Pb2MnWO6 have been synthesized and their structural, thermal, magnetic and dielectric properties studied in detail. Pure perovskite-phase formation and stoichiometric chemical composition of the as-grown crystals are confirmed by X-ray single-crystal and powder diffraction techniques as well as energy-dispersive X-ray and inductively coupled plasma mass spectrometry. Detailed structural analyses reveal that the crystals experience a structural phase transition from the cubic space group (s.g.) Fm3̅m to an orthorhombic structure in s.g. Pn21a at about 460 K. Dielectric data suggest that a ferrielectric phase transition takes place at that same temperature, in contrast to earlier results on polycrystalline samples, which reported a transition to s.g. Pnma and an antiferroelectric low-temperature phase. Magnetic susceptibility measurements indicate that a frustrated antiferromagnetic phase emerges below 8 K. Density functional theory based calculations confirm that the cationic order between Mn and W is favorable. The lowest total energy was found for an antiferromagnetically ordered state. However, analyses of the calculated exchange parameters revealed strongly competing antiferromagnetic interactions. The large distance between the magnetic atoms, together with magnetic frustration, is shown to be the main reason for the low value of the ordering temperature observed experimentally. We discuss the structure-property relationships in Pb2MnWO6 and compare these observations to reported results on related Pb2BWO6 perovskites with different B cations.

15.
Phys Rev Lett ; 116(9): 097205, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991199

RESUMO

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

16.
Sci Rep ; 6: 19964, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26817418

RESUMO

A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. Magnetization measurements on a Cu(13.5 at% Mn) sample show that this anisotropy is essentially temperature independent and acts on a temperature dependent excess magnetization, ΔM. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of ΔM at larger fields, thus instead appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction.

17.
Nanotechnology ; 26(47): 475703, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26536047

RESUMO

The question of the dominant interparticle magnetic interaction type in random closely packed assemblies of different diameter (6.2-11.5 nm) bare maghemite nanoparticles (NPs) is addressed. Single-particle magnetic properties such as particle anisotropy and exchange bias field are first of all studied in dilute (reference) systems of these same NPs, where interparticle interactions are neglible. Substantial surface spin disorder is revealed in all particles except the smallest, viz. for diameters d = 8-11.5 nm but not for d = 6.2-6.3 nm. X-ray diffraction analysis points to a crystallographic origin of this effect. The study of closely packed assemblies of the d ≥ 8 nm particles observes collective (superspin) freezing that clearly appears to be governed by interparticle dipole interactions. However, the dense assemblies of the smallest particles exhibit freezing temperatures that are higher than expected from a simple (dipole) extrapolation of the corresponding temperatures found in the d ≥ 8 nm assemblies. It is suggested that the nature of the dominant interparticle interaction in these smaller particle assemblies is superexchange, whereby the lack of significant surface spin disorder allows this mechanism to become important at the level of interacting superspins.

18.
J Phys Condens Matter ; 25(19): 196005, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23603378

RESUMO

The annealing-induced formation of (Mn, Ga)As nanocrystals in (Ga, Mn)As/GaAs superlattices was studied by x-ray diffraction, transmission electron microscopy and magnetometry. The superlattice structures with 50 Å thick (Ga, Mn)As layers separated by 25, 50 and 100 Å thick GaAs spacers were grown by molecular beam epitaxy at low temperature (250 °C), and then annealed at high temperatures of 400, 560 and 630 °C. The high-temperature annealing causes decomposition to a (Ga, Mn)As ternary alloy and the formation of (Mn, Ga)As nanocrystals inside the GaAs matrix. The nanocrystals are confined in the planes that were formerly occupied by (Ga, Mn)As layers for the up to 560 °C annealing and diffuse throughout the GaAs spacer layers at 630 °C annealing. The two-dimensionally confined nanocrystals exhibit a superparamagnetic behavior which becomes high-temperature ferromagnetism (~350 K) upon diffusion.


Assuntos
Arsenicais/química , Cristalização/métodos , Gálio/química , Magnésio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Dureza , Temperatura Alta , Substâncias Macromoleculares/química , Campos Magnéticos , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
Chem Commun (Camb) ; 46(9): 1455-7, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20162146

RESUMO

Neutron total scattering data have been used to probe the long- and short-range structure of 0.5BiMnO(3)-0.5ATiO(3) (A = Ba or Sr). Modelling of the total scattering data, using the reverse Monte Carlo (RMC) method, reveals local disorder that differs substantially from the average structure. Significantly, the Bi(3+) cations prefer to adopt an asymmetric coordination due to the influence of the lone-pair electrons.

20.
Science ; 302(5642): 92-5, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-14526076

RESUMO

Efforts to find the magnetic monopole in real space have been made in cosmic rays and in particle accelerators, but there has not yet been any firm evidence for its existence because of its very heavy mass, approximately 10(16) giga-electron volts. We show that the magnetic monopole can appear in the crystal momentum space of solids in the accessible low-energy region (approximately 0.1 to 1 electron volts) in the context of the anomalous Hall effect. We report experimental results together with first-principles calculations on the ferromagnetic crystal SrRuO3 that provide evidence for the magnetic monopole in the crystal momentum space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...