Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur J Pharm Sci ; 188: 106497, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329925

RESUMO

Semi-solid extrusion (SSE) 3D printing enables flexible designs and dose sizes to be printed on demand and is a suitable tool for fabricating personalized dosage forms. Controlled Expansion of Supercritical Solution (CESS®) is a particle size reduction technology, and it produces particles of a pure active pharmaceutical ingredient (API) in a dry state, suspendable in the printing ink. In the current study, as a model API of poorly water-soluble drug, nanoformed piroxicam (nanoPRX) prepared by CESS® was accommodated in hydroxypropyl methylcellulose- or hydroxypropyl cellulose-based ink formulations to warrant the printability in SSE 3D printing. Importantly, care must be taken when developing nanoPRX formulations to avoid changes in their polymorphic form or particle size. Printing inks suitable for SSE 3D printing that successfully stabilized the nanoPRX were developed. The inks were printed into films with escalating doses with exceptional accuracy. The original polymorphic form of nanoPRX in the prepared dosage forms was not affected by the manufacturing process. In addition, the conducted stability study showed that the nanoPRX in the prepared dosage form remained stable for at least three months from printing. Overall, the study rationalizes that with nanoparticle-based printing inks, superior dose control for the production of personalized dosage forms of poorly water-soluble drugs at the point-of-care can be achieved.


Assuntos
Piroxicam , Impressão Tridimensional , Tecnologia , Excipientes , Água
3.
Pharmaceutics ; 14(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35890235

RESUMO

Certain patient populations receive insufficient medicinal treatment due to a lack of commercially available products. The number of approved veterinary products is limited, making animals a patient population with suboptimal medicinal treatments available. To answer to this unmet need, compounding and off-label use of human-marketed products are practiced. Both of which have a significant risk of preparation errors. Hence, there is a dire demand to find and implement a more automated approach to the accurate, precise, and rapid production of veterinary dosage forms close to the point-of-care. This study aimed to assess the use of semi-solid extrusion-based 3D printing for the preparation of tailored doses of theophylline in the form of a chewable dosage form suitable for veterinary use. This study proved that semi-solid extrusion-based 3D printing could successfully be utilized to manufacture pet-friendly, chewable theophylline-loaded tablets. The prepared dosage forms showed a high correlation (R2 = 0.9973) between the designed size and obtained drug amount and met the USP and Ph. Eur. content uniformity criteria. Furthermore, the stability study showed the dosage form being stable and able to be used for up to three months after printing.

4.
Eur J Pharm Sci ; 174: 106190, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443212

RESUMO

Currently, there are a few or none marketed gabapentin veterinary products, leading to treatment with compounded dosage forms or off-label use of human-marketed products. With the said approaches, there are significant risks of preparation errors, rendering these practices suboptimal. A new manufacturing technique to accurately and rapidly prepare veterinary dosage forms close to the point-of-care is needed. However, a current hurdle in developing small-dose gabapentin dosage forms is the quantification of the gabapentin molecule. UV-Vis spectrophotometric quantification possesses suitable properties for implementation at small production sites, but quantifying gabapentin with the said technique has proven to be challenging as the small molecule lacks chromophores. This study aimed at thoroughly assessing UV-Vis spectrophotometric gabapentin quantification methods with the intent of finding a reliable method. Excellent linearity (R2 = 0.9998) in a broad and useful concentration range (0.5-40 µg/mL) was detected for the ascorbic acid derivatization method at a wavelength of 376 nm. The method was successfully applied to determine the drug content in the prepared semi-solid extrusion 3D-printed dosage forms. This study proved that pet-friendly tailored gabapentin dosage forms could easily be manufactured by semi-solid extrusion 3D printing and UV-Vis spectrophotometrically analyzed with the ascorbic acid derivatization method.


Assuntos
Ácido Ascórbico , Impressão Tridimensional , Liberação Controlada de Fármacos , Gabapentina , Humanos , Comprimidos , Tecnologia Farmacêutica/métodos
5.
Pharmaceutics ; 12(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352700

RESUMO

Currently, the number of approved veterinary medicines are limited, and human medications are used off-label. These approved human medications are of too high potencies for a cat or a small dog breed. Therefore, there is a dire demand for smaller doses of veterinary medicines. This study aims to investigate the use of three semi-solid extrusion 3D printers in a pharmacy or animal clinic setting for the extemporaneous manufacturing of prednisolone containing orodispersible films for veterinary use. Orodispersible films with adequate content uniformity and acceptance values as defined by the European Pharmacopoeia were produced with one of the studied printers, namely the Allevi 2 bioprinter. Smooth and flexible films with high mechanical strength, neutral pH, and low moisture content were produced with a high correlation between the prepared design and the obtained drug amount, indicating that the Allevi 2 printer could successfully be used to extemporaneously manufacture personalized doses for animals at the point-of-care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...