Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(15): 4088-4094, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856502

RESUMO

We present measurements of seeing-induced crosstalk using spectropolarimetric observations of sunspots recorded simultaneously in the H α and Ca ii 8662 Å lines with the Kodaikanal Tower Tunnel (KTT) telescope. The Kodaikanal Tower Tunnel telescope is integrated and installed with an image stabilization system consisting of a tip-tilt and an autoguider system. Additionally, the spectropolarimeter at KTT is upgraded to allow for the simultaneous recording of spectropolarimetric observations in three spectral lines. The tip-tilt system is shown to have a cutoff frequency of 80 Hz, effectively reducing the seeing induced crosstalk in the measured Stokes parameters by at least a factor of 2.

2.
Nutrients ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674902

RESUMO

Fermented foods have long been known to have immunomodulatory capabilities, and fermentates derived from the lactic acid bacteria of dairy products can modulate the immune system. We have used skimmed milk powder to generate novel fermentates using Lb. helveticus strains SC234 and SC232 and we demonstrate here that these fermentates can enhance key immune mechanisms that are critical to the immune response to viruses. We show that our novel fermentates, SC234 and SC232, can positively impact on cytokine and chemokine secretion, nitric oxide (NO) production, cell surface marker expression, and phagocytosis in macrophage models. We demonstrate that the fermentates SC234 and SC232 increase the secretion of cytokines IL-1ß, IL-6, TNF-α, IL-27, and IL-10; promote an M1 pro-inflammatory phenotype for viral immunity via NO induction; decrease chemokine expression of Monocyte Chemoattractant Protein (MCP); increase cell surface marker expression; and enhance phagocytosis in comparison to their starting material. These data suggest that these novel fermentates have potential as novel functional food ingredients for the treatment, management, and control of viral infection.


Assuntos
Citocinas , Fermentação , Óxido Nítrico , Fagocitose , Citocinas/metabolismo , Animais , Óxido Nítrico/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Viroses/imunologia
3.
Eur Phys J E Soft Matter ; 47(3): 19, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472476

RESUMO

The vibrational spectrum of granular packings can be used as a signature of the jamming transition, with the density of states at zero frequency becoming nonzero at the transition. It has been proposed previously that the vibrational spectrum of granular packings can be approximately obtained from random matrix theory. Here, we show that the autocorrelation function of the density of states shows good agreement between dynamical numerical simulations of frictionless bead packs near the jamming point and the analytic predictions of the Laguerre orthogonal ensemble of random matrices; there is clear disagreement with the Gaussian orthogonal ensemble, establishing that the Laguerre ensemble correctly reproduces the universal statistical properties of jammed granular matter and excluding the Gaussian orthogonal ensemble. We also present a random lattice model which is a physically motivated variant of the random matrix ensemble. Numerical calculations reveal that this model reproduces the known features of the vibrational density of states of frictionless granular matter, while also retaining the correlation structure seen in the Laguerre random matrix theory.

4.
MethodsX ; 11: 102393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846356

RESUMO

Ex vivo colon model experiments are frequently employed as a means to assess the gut microbiome modulating potential of different foods, food ingredients and dietary supplements. A number of useful models already exist; however, they tend to be relatively low in terms of throughput (3-4 samples per experiment) with a long experiment duration of one to a number of weeks. Therefore, a need for a high-throughput system with a short duration time is required to enable screening of large numbers of samples. Therefore, we report here on the development of a system based on the Applikon micro-Matrix bioreactor which has the capacity to run 24 samples with an experiment duration of 48 h. However, Escherichia coli blooms are a common problem encountered in this model. Here, we describe the factors that contribute to such blooms and provide approaches to address them, providing:•Step by step optimisation of processes involved in conducting ex vivo distal colon experiments using the micro-Matrix bioreactor fermentation platform•Recommended steps for users on how to attenuate E. coli blooms in such ex vivo colon model experiments.

5.
Int J Biol Macromol ; 253(Pt 2): 126689, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678679

RESUMO

Bovine mastitis is a costly disease in the dairy sector worldwide. Here the objective was to identify and characterize anti-biofilm compounds produced by Bacillus spp. against S. aureus associated with bovine mastitis. Results showed that cell-free supernatants of three Bacillus strains (out of 33 analysed) reduced S. aureus biofilm formation by approximately 40 % without affecting bacterial growth. The anti-biofilm activity was associated with exopolysaccharides (EPS) secreted by Bacillus spp. The EPS decreased S. aureus biofilm formation in a dose-dependent manner, inhibiting biofilm formation by 83 % at 1 mg/mL. The EPS also showed some biofilm disruption activity (up to 36.4 %), which may be partially mediated by increased expression of the aur gene. The characterization of EPS produced by Bacillus velezensis 87 and B. velezensis TR47II revealed macromolecules with molecular weights of 31.2 and 33.7 kDa, respectively. These macromolecules were composed mainly of glucose (mean = 218.5 µg/mg) and mannose (mean = 241.5 µg/mg) and had similar functional groups (pyranose ring, beta-type glycosidic linkage, and alkynes) as revealed by FT-IR. In conclusion, this study shows the potential applications of EPS produced by B. velezensis as an anti-biofilm compound that could contribute to the treatment of bovine mastitis caused by S. aureus.


Assuntos
Bacillus , Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Staphylococcus aureus/genética , Mastite Bovina/tratamento farmacológico , Mastite Bovina/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Estafilocócicas/microbiologia , Biofilmes
6.
Sci Rep ; 13(1): 7899, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193715

RESUMO

Nisin is a broad spectrum bacteriocin used extensively as a food preservative that was identified in Lactococcus lactis nearly a century ago. We show that orally-ingested nisin survives transit through the porcine gastrointestinal tract intact (as evidenced by activity and molecular weight determination) where it impacts both the composition and functioning of the microbiota. Specifically, nisin treatment caused a reversible decrease in Gram positive bacteria, resulting in a reshaping of the Firmicutes and a corresponding relative increase in Gram negative Proteobacteria. These changes were mirrored by the modification in relative abundance of pathways involved in acetate, butyrate (decreased) and propionate (increased) synthesis which correlated with overall reductions in short chain fatty acid levels in stool. These reversible changes that occur as a result of nisin ingestion demonstrate the potential of bacteriocins like nisin to shape mammalian microbiomes and impact on the functionality of the community.


Assuntos
Bacteriocinas , Microbioma Gastrointestinal , Lactococcus lactis , Nisina , Animais , Suínos , Nisina/farmacologia , Nisina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bactérias Gram-Positivas/metabolismo , Lactococcus lactis/metabolismo , Mamíferos/metabolismo
7.
Front Microbiol ; 13: 759649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391729

RESUMO

Bovine mastitis is a disease with a multi-etiological nature, defined as an infection and inflammation of the udder. Mastitis represents a significant ongoing concern in the dairy industry, leading to substantial losses in profits and revenue for farmers worldwide. The predominant causes of bovine mastitis include the pathogens Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus uberis, and Escherichia coli. Antibiotic administration is currently the main treatment option for mastitis. However, there is a pressing need for alternative therapies to treat and prevent the disease, especially with the emergence of antibiotic-resistant, mastitis-causing pathogens, resulting in antibiotic treatment failure. One such example is live bio-therapeutics (also known as probiotics), such as Lactococcus lactis DPC3147. The efficacy of this live bio-therapeutic has been demonstrated in several previous trials by our group. The most recent of these trials showed that an emulsion-based formulation of this strain was as effective as a commercial antibiotic formulation in treating sub-clinical and clinical cases of bovine mastitis. Here, we report the results of a follow-up field trial, in which we sought to gain insight into the mechanism of action of such live bio-therapeutics, focussing on chronic mastitis cases. We treated 28 cows with chronic mastitis with two separate emulsion-based formulations containing either viable L. lactis DPC3147 cells (15 cows) or heat-killed L. lactis DPC3147 cells (13 cows). We then evaluated the efficacies of the two formulations (two treatment groups) in terms of stimulating a localized immune response (quantified by measuring IL-8 concentrations in milk collected from udders affected by mastitis) and efficacies in terms of cure rates (quantified by reductions in somatic cell counts and absence of pathogens). We demonstrate that the presence of heat-inactivated bacteria (a postbiotic) was as effective as the live bio-therapeutic in eliciting a localized immune response in cows with chronic mastitis. The response to heat-killed cells (postbiotic) reported herein could have beneficial implications for farmers with regard to prolonging the shelf life of such emulsion-based formulations containing heat-killed cells of L. lactis DPC3147 for curing cows with mastitis.

8.
Microbiol Spectr ; 9(2): e0117921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643412

RESUMO

Conjugated linoleic acid (CLA) has been the subject of numerous studies in recent decades because of its associated health benefits. CLA is an intermediate product of the biohydrogenation pathway of linoleic acid (LA) in bacteria. Several bacterial species capable of efficiently converting LA into CLA have been widely reported in the literature, among them Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230. Over the last few years, a multicomponent enzymatic system consisting of three enzymes involved in the biohydrogenation process of LA has been proposed. Sequencing the genome of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 revealed only one gene capable of encoding an oleate hydratase (OleH), unlike the presence of multiple genes typically found in similar strains. This study investigated the biological effect of the OleH enzyme of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 on the hydration of LA and dehydration of ricinoleic acid (RA) and its possible role in the production of CLA. The OleH was cloned, expressed, purified, and characterized. Fatty acid measurements were made by an internal standard method using a gas chromatography-coupled flame ionization detector (GC-FID) system. It was found that the enzyme is a hydratase/dehydratase, leading to a reversible transformation between LA and RA. In addition, the results showed that L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH protein plays a role in stress tolerance in Escherichia coli. In conclusion, the OleH of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the initial stage of saturation metabolism of LA, although it has not converted the substrates directly into CLA. IMPORTANCE This study provides insight into the enzymatic mechanism of CLA synthesis in L. delbrueckii subsp. bulgaricus and broadens our understanding of the bioconversion of LA and RA by OleH. The impact of OleH on the production of the c9, t11 CLA isomer and stress tolerance by E. coli has been assisted. The results provide an understanding of the factors which influence OleH activity. L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH presented two putative fatty acid-binding sites. Recombinant OleH catalyzed both LA hydration and RA dehydration. OleH was shown to play a role in bacterial growth performance in the presence of LA.


Assuntos
Hidroliases/metabolismo , Lactobacillus delbrueckii/enzimologia , Lactobacillus delbrueckii/metabolismo , Ácido Linoleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Genoma Bacteriano/genética , Hidroliases/genética , Hidrogenação , Lactobacillus delbrueckii/genética , Estresse Fisiológico/fisiologia , Sequenciamento Completo do Genoma
10.
Nutrients ; 12(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512787

RESUMO

Consuming fermented foods has been reported to result in improvements in a range of health parameters. These positive effects can be exerted by a combination of the live microorganisms that the fermented foods contain, as well as the bioactive components released into the foods as by-products of the fermentation process. In many instances, and particularly in dairy fermented foods, the microorganisms involved in the fermentation process belong to the lactic acid group of bacteria (LAB). An alternative approach to making some of the health benefits that have been attributed to fermented foods available is through the production of 'fermentates'. The term 'fermentate' generally relates to a powdered preparation, derived from a fermented product and which can contain the fermenting microorganisms, components of these microorganisms, culture supernatants, fermented substrates, and a range of metabolites and bioactive components with potential health benefits. Here, we provide a brief overview of a selection of in vitro and in vivo studies and patents exclusively reporting the health benefits of LAB 'fermentates'. Typically, in such studies, the potential health benefits have been attributed to the bioactive metabolites present in the crude fermentates and/or culture supernatants rather than the direct effects of the LAB strain(s) involved.


Assuntos
Alimentos Fermentados , Microbiologia de Alimentos , Lactobacillales , Fenômenos Fisiológicos da Nutrição/fisiologia , Probióticos , Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Doenças Cardiovasculares/prevenção & controle , Cognição , Produtos Fermentados do Leite/microbiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Fermentação , Alimentos Fermentados/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Microbioma Gastrointestinal , Humanos , Imunomodulação
11.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740495

RESUMO

The skin microbiota is thought to play a key role in host protection from infection. Nisin J is a novel nisin variant produced by Staphylococcus capitis APC 2923, a strain isolated from the toe web space area in a screening study performed on the human skin microbiota. Whole-genome sequencing and mass spectrometry of the purified peptide confirmed that S. capitis APC 2923 produces a 3,458-Da bacteriocin, designated nisin J, which exhibited antimicrobial activity against a range of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and Cutibacterium acnes The gene order in the nisin J gene cluster (nsjFEGBTCJP) differs from that of other nisin variants in that it is lacking the nisin regulatory genes, nisRK, as well as the nisin immunity gene nisI Nisin J has 9 amino acid changes compared to prototypical nisin A, with 8 amino acid substitutions, 6 of which are not present in other nisin variants (Ile4Lys, Met17Gln, Gly18Thr, Asn20Phe, Met21Ala, Ile30Gly, Val33His, and Lys34Thr), and an extra amino acid close to the C terminus, rendering nisin J the only nisin variant to contain 35 amino acids. This is the first report of a nisin variant produced by a Staphylococcus species and the first nisin producer isolated from human skin.IMPORTANCE This study describes the characterization of nisin J, the first example of a natural nisin variant, produced by a human skin isolate of staphylococcal origin. Nisin J displays inhibitory activity against a wide range of bacterial targets, including MRSA. This work demonstrates the potential of human commensals as a source for novel antimicrobials that could form part of the solution to antibiotic resistance across a broad range of bacterial pathogens.


Assuntos
Nisina/genética , Nisina/metabolismo , Pele/microbiologia , Staphylococcus capitis/metabolismo , Anti-Infecciosos/farmacologia , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Família Multigênica/genética , Nisina/efeitos dos fármacos , Propionibacteriaceae/efeitos dos fármacos , Propionibacteriaceae/genética , Propionibacteriaceae/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus capitis/efeitos dos fármacos , Staphylococcus capitis/genética , Sequenciamento Completo do Genoma
12.
Front Microbiol ; 10: 2220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611858

RESUMO

Bovine mastitis is an ongoing significant concern in the dairy and agricultural industry resulting in substantial losses in milk production and revenue. Among the predominant etiological agents of bovine mastitis are Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli. Currently, the treatment of choice for bovine mastitis involves the use of commercial therapeutic antibiotic formulations such as TerrexineTM, containing both kanamycin and cephalexin. Such antibiotics are regularly administered in more than one dose resulting in the withholding of milk for processing for a number of days. Here, we describe the optimization of a formulation of Lactococcus lactis DPC3147, that produces the two-component bacteriocin lacticin 3147, in a liquid paraffin-based emulsion (formulation hereafter designated 'live bio-therapeutic') for the first time and compare it to the commercial antibiotic formulation TerrexineTM, with a view to treating cows with clinical/sub-clinical mastitis. Critically, in a field trial described here, this 'ready-to-use' emulsion containing live L. lactis DPC3147 cells exhibited comparable efficacy to TerrexineTM when used to treat mastitic cows. Furthermore, we found that the L. lactis cells within this novel emulsion-based formulation remained viable for up to 5 weeks, when stored at 4, 22, or 37°C. The relative ease and cost-effective nature of producing this 'live bio-therapeutic' formulation, in addition to its enhanced shelf life compared to previous aqueous-based formulations, indicate that this product could be a viable alternative therapeutic option for bovine mastitis. Moreover, the single-dose administration of this 'live bio-therapeutic' formulation is a further advantage, as it can expedite the return of the milk to the milk pool, in comparison to some commercial antibiotics. Overall, in this field trial, we show that the live bio-therapeutic formulation displayed a 47% cure rate compared to a 50% cure rate for a commercial antibiotic control, with respect to curing cows with clinical/sub-clinical mastitis. The study suggests that a larger field trial to further demonstrate efficacy is warranted.

13.
Mol Microbiol ; 111(3): 717-731, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30537404

RESUMO

The emergence and dissemination of antibiotic resistant bacteria is a major medical challenge. Lantibiotics are highly modified bacterially produced antimicrobial peptides that have attracted considerable interest as alternatives or adjuncts to existing antibiotics. Nisin, the most widely studied and commercially exploited lantibiotic, exhibits high efficacy against many pathogens. However, some clinically relevant bacteria express highly specific membrane-associated nisin resistance proteins. One notable example is the nisin resistance protein that acts by cleaving the peptide bond between ring E and the adjacent serine 29, resulting in a truncated peptide with significantly less activity. We utilised a complete bank of bioengineered nisin (nisin A) producers in which the serine 29 residue has been replaced with every alternative amino acid. The nisin A S29P derivative was found to be as active as nisin A against a variety of bacterial targets but, crucially, exhibited a 20-fold increase in specific activity against a strain expressing the nisin resistance protein. Another derivative, nisin PV, exhibited similar properties but was much less prone to oxidation. This version of nisin with enhanced resistance to specific resistance mechanisms could prove useful in the fight against antibiotic resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bioengenharia/métodos , Nisina/química , Nisina/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Nisina/genética
14.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366997

RESUMO

Lactobacillus species are widely used as probiotics and starter cultures for a variety of foods, supported by a long history of safe usage. Although more than 35 species meet the European Food Safety Authority (EFSA) criteria for qualified presumption of safety status, the safety of Lactobacillus species and their carriage of antibiotic resistance (AR) genes is under continuing ad hoc review. To comprehensively update the identification of AR in the genus Lactobacillus, we determined the antibiotic susceptibility patterns of 182 Lactobacillus type strains and compared these phenotypes to their genotypes based on genome-wide annotations of AR genes. Resistances to trimethoprim, vancomycin, and kanamycin were the most common phenotypes. A combination of homology-based screening and manual annotation identified genes encoding resistance to aminoglycosides (20 sequences), tetracycline (18), erythromycin (6), clindamycin (60), and chloramphenicol (42). In particular, the genes aac(3) and lsa, involved in resistance to aminoglycosides and clindamycin, respectively, were found in Lactobacillus spp. Acquired determinants predicted to code for tetracycline and erythromycin resistance were detected in Lactobacillus ingluviei, Lactobacillus amylophilus, and Lactobacillus amylotrophicus, flanked in the genome by mobile genetic elements with potential for horizontal transfer.IMPORTANCELactobacillus species are generally considered to be nonpathogenic and are used in a wide variety of foods and products for humans and animals. However, many of the species examined in this study have antibiotic resistance levels which exceed those recommended by the EFSA, suggesting that these cutoff values should be reexamined in light of the genetic basis for resistance discussed here. Our data provide evidence for rationally revising the regulatory guidelines for safety assessment of lactobacilli entering the food chain as starter cultures, food preservatives, or probiotics and will facilitate comprehensive genotype-based assessment of strains for safety screening.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética
15.
Eur J Pharm Biopharm ; 133: 12-19, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267836

RESUMO

Clofazimine (CFZ) is a hydrophobic antibiotic agent which exhibits poor solubility. This poor solubility was overcome herein by the formulation of CFZ with the digestive enzyme pepsin. It is shown that pepsin can actively bind 11 CFZ molecules in the protein's native gastric environment, forming a CFZ-pepsin complex. A dynamic dissolution system, representing both the gastric and intestinal system, was used to analyze this CFZ-pepsin complex, revealing that only CFZ which binds to pepsin in the gastric environment remains in solution in the intestinal environment. The CFZ-pepsin complex displays adequate solution stability for the delivery of CFZ into the lower intestinal system. In vitro bioactivity assays against Clostridium difficile demonstrated the effectiveness of this CFZ-pepsin complex for the treatment of infectious diseases in the lower intestinal system.


Assuntos
Clofazimina/metabolismo , Portadores de Fármacos/metabolismo , Trato Gastrointestinal/metabolismo , Pepsina A/metabolismo , Antibacterianos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-29707229

RESUMO

Biofilms are sessile communities of bacteria typically embedded in an extracellular polymeric matrix. Bacterial cells embedded in biofilms are inherently recalcitrant to antimicrobials, compared to cells existing in a planktonic state, and are notoriously difficult to eradicate once formed. Avenues to tackle biofilms thus far have largely focussed on attempting to disrupt the initial stages of biofilm formation, including adhesion and maturation of the biofilm. Such an approach is advantageous as the concentrations required to inhibit formation of biofilms are generally much lower than removing a fully established biofilm. The crisis of antibiotic resistance in clinical settings worldwide has been further exacerbated by the ability of certain pathogenic bacteria to form biofilms. Perhaps the most notorious biofilm formers described from a clinical viewpoint have been methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Gardnerella vaginalis and Streptococcus mutans, the latter of which is found in oral biofilms. Due to the dearth of novel antibiotics in recent decades, compounded by the increasing rate of emergence of resistance amongst pathogens with a propensity for biofilm formation, solutions are urgently required to mitigate these crises. Bacteriocins are a class of antimicrobial peptides, which are ribosomally synthesised and often are more potent than their antibiotic counterparts. Here, we review a selection of studies conducted with bacteriocins with the ultimate objective of inhibiting biofilms. Overall, a deeper understanding of the precise means by which a biofilm forms on a substrate as well as insights into the mechanisms by which bacteriocins inhibit biofilms is warranted.

17.
Front Microbiol ; 8: 1205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28706513

RESUMO

The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.

18.
Front Microbiol ; 8: 696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473822

RESUMO

Thuricin CD is a two-component bacteriocin, consisting of the peptides Trnα and Trnß, and belongs to the newly designated sactibiotic subclass of bacteriocins. While it is clear from studies conducted thus far that it is a narrow-spectrum bacteriocin, requiring the synergistic activity of the two peptides, the precise mechanism of action of thuricin CD has not been elucidated. This study used a combination of flow cytometry and traditional culture-dependent assays to ascertain the effects of the thuricin CD peptides on the morphology, physiology and viability of sensitive Bacillus firmus DPC6349 cells. We show that both Trnα and Trnß are membrane-acting and cause a collapse of the membrane potential, which could not be reversed even under membrane-repolarizing conditions. Furthermore, the depolarizing action of thuricin CD is accompanied by reductions in cell size and granularity, producing a pattern of physiological alterations in DPC6349 cells similar to those triggered by the pore-forming single-component bacteriocin Nisin A, and two-component lacticin 3147. Taken together, these results lead us to postulate that the lytic activity of thuricin CD involves the insertion of thuricin CD peptides into the membrane of target cells leading to permeabilization due to pore formation and consequent flux of ions across the membrane, resulting in membrane depolarization and eventual cell death.

19.
Gut Pathog ; 8: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257437

RESUMO

BACKGROUND: Thuricin CD is a two-component antimicrobial, belonging to the recently designated sactibiotic subclass of bacteriocins. The aim of this study was to investigate the effects of thuricin CD, as well as the antibiotics, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide when used independently and when combined at low concentrations on the viability of Clostridium difficile 20291 R027, TL178 R002, Liv022 R106, DPC6350 and VPI10463 biofilms and planktonic cells. RESULTS: On the basis of XTT (2,3-bis[2-methyloxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide)-menadione biofilm viability assays, we found that thuricin CD was effective against biofilms of R027, Liv022 R106 and DPC6350 when used independently while nitazoxanide and rifampicin were also potent against biofilms of R027 and DPC6350, when applied on their own. Tigecycline was found to be effective against R027 and DPC6350 biofilms, whereas teicoplanin and vancomycin when used independently were only effective against DPC6350 biofilms. The efficacies of the antibiotics rifampicin, tigecycline, vancomycin and teicoplanin against C. difficile 20291 R027 biofilms were significantly potentiated when combined with thuricin CD, indicating effective antimicrobial combinations with this sactibiotic against R027 biofilms. However, the potency of nitazoxanide against R027 biofilms was significantly diminished when combined with thuricin CD, indicating an ineffective combination with this sactibiotic against R027 biofilms. Paired combinations of thuricin CD along with these five antibiotics were effective at diminishing the viability of DPC6350 biofilms. However, such combinations were largely ineffective against biofilms of TL178 R002, Liv022 R106 and VPI10463. CONCLUSIONS: To the best of our knowledge, this is the first study to highlight the activity of a sactibiotic bacteriocin against biofilms and the first to reveal the potency of the antibiotics tigecycline, teicoplanin and nitazoxanide against C. difficile biofilms. On the basis of this study, it is apparent that different strains of C. difficile possess varying abilities to form biofilms and that the sensitivities of these biofilms to different antimicrobials and antimicrobial combinations are strain-dependent. Since the formation of relatively strong biofilms by certain C. difficile strains may contribute to increased cases of antibiotic resistance and recurrence and relapse of C. difficile infection, the findings presented in this study could provide alternative strategies to target this pathogen.

20.
J Egypt Natl Canc Inst ; 28(2): 65-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26975730

RESUMO

Uveal tract melanoma is the most common primary intraocular malignancy in adults, accounting for about 5-10% of all the melanomas. Since there are no lymphatic vessels in the eye, uveal melanoma can only spread hematogenously leading to liver metastasis. A wide variety of treatment modalities are available for its management, leading to dilemma in selecting the appropriate therapy. This article reviews the diagnostic and therapeutic modalities available and thus, can help to individualize the treatment plan for each patient.


Assuntos
Enucleação Ocular , Neoplasias Hepáticas/terapia , Melanoma/diagnóstico , Melanoma/radioterapia , Medicina de Precisão , Neoplasias Uveais/diagnóstico , Neoplasias Uveais/radioterapia , Adulto , Biópsia por Agulha Fina , Braquiterapia/efeitos adversos , Olho/patologia , Angiofluoresceinografia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/secundário , Terapia com Luz de Baixa Intensidade/efeitos adversos , Melanoma/patologia , Melanoma/cirurgia , Estadiamento de Neoplasias , Prognóstico , Terapia com Prótons/efeitos adversos , Tomografia Computadorizada por Raios X , Ultrassonografia , Neoplasias Uveais/patologia , Neoplasias Uveais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...