Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(9): ar94, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379202

RESUMO

During disease and development, physical changes in extracellular matrix cause jamming, unjamming, and scattering in epithelial migration. However, whether disruptions in matrix topology alter collective cell migration speed and cell-cell coordination remains unclear. We microfabricated substrates with stumps of defined geometry, density, and orientation, which create obstructions for migrating epithelial cells. Here, we show that cells lose their speed and directionality when moving through densely spaced obstructions. Although leader cells are stiffer than follower cells on flat substrates, dense obstructions cause overall cell softening. Through a lattice-based model, we identify cellular protrusions, cell-cell adhesions, and leader-follower communication as key mechanisms for obstruction-sensitive collective cell migration. Our modeling predictions and experimental validations show that cells' obstruction sensitivity requires an optimal balance of cell-cell adhesions and protrusions. Both MDCK (more cohesive) and α-catenin-depleted MCF10A cells were less obstruction sensitive than wild-type MCF10A cells. Together, microscale softening, mesoscale disorder, and macroscale multicellular communication enable epithelial cell populations to sense topological obstructions encountered in challenging environments. Thus, obstruction-sensitivity could define "mechanotype" of cells that collectively migrate yet maintain intercellular communication.


Assuntos
Comunicação Celular , Matriz Extracelular , Movimento Celular , Adesão Celular
2.
Cell Rep ; 42(4): 112362, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027304

RESUMO

Adherent cells migrate on layered tissue interfaces to drive morphogenesis, wound healing, and tumor invasion. Although stiffer surfaces are known to enhance cell migration, it remains unclear whether cells sense basal stiff environments buried under softer, fibrous matrix. Using layered collagen-polyacrylamide gel systems, we unveil a migration phenotype driven by cell-matrix polarity. Here, cancer (but not normal) cells with stiff base matrix generate stable protrusions, faster migration, and greater collagen deformation because of "depth mechanosensing" through the top collagen layer. Cancer cell protrusions with front-rear polarity produce polarized collagen stiffening and deformations. Disruption of either extracellular or intracellular polarity via collagen crosslinking, laser ablation, or Arp2/3 inhibition independently abrogates depth-mechanosensitive migration of cancer cells. Our experimental findings, validated by lattice-based energy minimization modeling, present a cell migration mechanism whereby polarized cellular protrusions and contractility are reciprocated by mechanical extracellular polarity, culminating in a cell-type-dependent ability to mechanosense through matrix layers.


Assuntos
Extensões da Superfície Celular , Colágeno , Colágeno/metabolismo , Movimento Celular/fisiologia , Morfogênese , Extensões da Superfície Celular/metabolismo , Matriz Extracelular/metabolismo
3.
Dev Cell ; 58(1): 34-50.e9, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626870

RESUMO

Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Humanos , Animais , Feminino , beta Catenina , Laminina , Movimento Celular/fisiologia , Caderinas/metabolismo , Neoplasias da Mama/patologia , Microambiente Tumoral
4.
Mol Biol Cell ; 34(6): ar54, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36696158

RESUMO

Cells sense and migrate across mechanically dissimilar environments throughout development and disease progression. However, it remains unclear whether mechanical memory of past environments empowers cells to navigate new, three-dimensional extracellular matrices. Here, we show that cells previously primed on stiff, compared with soft, matrices generate a higher level of forces to remodel collagen fibers and promote invasion. This priming advantage persists in dense or stiffened collagen. We explain this memory-dependent, cross-environment cell invasion through a lattice-based model wherein stiff-primed cellular forces remodel collagen and minimize energy required for future cell invasion. According to our model, cells transfer their mechanical memory to the matrix via collagen alignment and tension, and this remodeled matrix informs future cell invasion. Thus, memory-laden cells overcome mechanosensing of softer or challenging future environments via a cell-matrix transfer of memory. Consistent with model predictions, depletion of yes-associated protein destabilizes the cellular memory required for collagen remodeling before invasion. We release tension in collagen fibers via laser ablation and disable fiber remodeling by lysyl-oxidase inhibition, both of which disrupt cell-to-matrix transfer of memory and hamper cross-environment invasion. These results have implications for cancer, fibrosis, and aging, where a potential cell-to-matrix transfer of mechanical memory of cells may generate a prolonged cellular response.


Assuntos
Colágeno , Neoplasias , Humanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Fibrose
5.
Biophys J ; 120(22): 5074-5089, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34627766

RESUMO

Mechanotransduction describes activation of gene expression by changes in the cell's physical microenvironment. Recent experiments show that mechanotransduction can lead to long-term "mechanical memory," in which cells cultured on stiff substrates for sufficient time (priming phase) maintain altered phenotype after switching to soft substrates (dissipation phase) as compared to unprimed controls. The timescale of memory acquisition and retention is orders of magnitude larger than the timescale of mechanosensitive cellular signaling, and memory retention time changes continuously with priming time. We develop a model that captures these features by accounting for positive reinforcement in mechanical signaling. The sensitivity of reinforcement represents the dynamic transcriptional state of the cell composed of protein lifetimes and three-dimensional chromatin organization. Our model provides a single framework connecting microenvironment mechanical history to cellular outcomes ranging from no memory to terminal differentiation. Predicting cellular memory of environmental changes can help engineer cellular dynamics through changes in culture environments.


Assuntos
Mecanotransdução Celular , Reforço Psicológico , Expressão Gênica , Fenótipo
6.
Biophys J ; 115(12): 2474-2485, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527449

RESUMO

Collective migration of heterogeneous cell populations is an essential aspect of fundamental biological processes, including morphogenesis, wound healing, and tumor invasion. Through experiments and modeling, it has been shown that cells attain front-rear polarity, generate forces, and form adhesions to migrate. However, it remains unclear how the ability of individual cells in a population to dynamically repolarize themselves into new directions could regulate the collective response. We present a vertex-based model in which each deformable cell randomly chooses a new polarization direction after every defined time interval, elongates, proportionally generates forces, and causes collective migration. Our simulations predict that cell types that repolarize at longer time intervals attain more elongated shapes, migrate faster, deform the cell sheet, and roughen the leading edge. By imaging collectively migrating epithelial cell monolayers at high temporal resolution, we found longer repolarization intervals and elongated shapes of cells at the leading edge compared to those within the monolayer. Based on these experimental measurements and simulations, we defined aggressive mutant leader cells by long repolarization interval and minimal intercellular contact. The cells with frequent and random repolarization were defined as normal cells. In simulations with uniformly dispersed leader cells in a normal cell population at a 1:10 ratio, the resulting migration and deformation of the heterogeneous cell sheet remained low. However, when the 10% mutant leaders were placed only at the leading edge, we predicted a rise in the migration of an otherwise normal cell sheet. Our model predicts that a repolarization-based definition of leader cells and their placement within a healthy population can generate myriad modes of collective cell migration, which can enhance our understanding of collective cell migration in disease and development.


Assuntos
Movimento Celular , Modelos Biológicos , Colágeno/metabolismo , Cinética , Mutação
7.
Integr Biol (Camb) ; 10(6): 342-355, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29790537

RESUMO

In fibrosis and cancer, degradation of basement membrane (BM) and cell invasion are considered as key outcomes of a cellular transformation called epithelial-mesenchymal transition (EMT). Here, we pose a converse question - can preexisting physical defects in the BM matrix cause EMT in normal epithelial cells? On a BM-mimicking matrix of collagen-IV-coated polyacrylamide (PA) gel, we have discovered a reverse phenomenon in which preexisting defects trigger EMT in normal epithelial cells. Through spatiotemporal measurements and simulations in silico, we demonstrate that the EMT precedes cellular mechanoactivation on defective matrices, but they occur concurrently on stiff matrices. The defect-dependent EMT caused cell invasion though a stroma-mimicking collagen-I layer, which could be disabled through MMP9 inhibition. Our findings reveal that the known BM degradation caused by cellular EMT and invasion is not a one-way process. Instead, normal epithelial cells can exploit physical defects in the BM matrix to undergo disease-like cellular transformations.


Assuntos
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...