Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 884: 163725, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116809

RESUMO

This study investigated critical metal (CM) geochemistry including rare earth elements (REEs), Co, Ni, and Mn in groundwaters below and surrounding two dredged material placement facilities (DMPFs). Metal concentrations are elevated at both sites, spanning several orders of magnitude. The highest CM concentrations measured exceed many environments considered as aqueous resources (Co and Ni > 1 mg L-1, REEs > 3 mg L-1). Correlations between sulfur and iron, major cations, and CMs indicate that oxidation of sulfides present in the DM releases metals both directly from sulfide minerals and indirectly through acid dissolution of and/or desorption from additional minerals. REE fractionation patterns indicate that their mobility in the groundwaters may be influenced by interactions with silicate, carbonate, and phosphate minerals. Significant positive Gd and Eu anomalies were observed, which may be attributed to increased mobility of Eu2+ and anthropogenic Gd. Nanogeochemical analysis of filtered samples revealed several REE-bearing nanoparticulate (diameter < 100 nm) species, some of which co-occurred with aluminum, suggesting an (oxy)hydroxide or a clay mineral component. Further characterization of soluble and nano scale geochemical speciation is needed to fully assess the viability of CM recovery from DM-associated groundwater. CM recovery from DM-associated waters can provide a beneficial use, both offsetting costs associated with disposal, and supplementing domestic CM resources.


Assuntos
Água Subterrânea , Metais Terras Raras , Monitoramento Ambiental , Metais/análise , Metais Terras Raras/análise , Água Subterrânea/química , Minerais/análise
2.
Proc Natl Acad Sci U S A ; 114(37): 9832-9837, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28855335

RESUMO

The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...