Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 72(20): 5055-62, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11055728

RESUMO

A new combination of a dual EI/CI ion source with a quadrupole ion trap mass spectrometer has been realized in order to efficiently produce negative ions in the reaction cell. Analysis of volatile compounds was performed under negative ion chemical ionization (NICI) during a reaction period where selected reactant negative ions, previously produced in the external ion source, were allowed to interact with molecules, introduced by hyphenated techniques such as gas chromatography. The O2*-, CH3O-, and Cl- reactant ions were used in this study to ensure specific ion/molecule interactions such as proton transfer, nucleophilic displacement, or charge exchange processes, respectively leading to even-electron species, i.e., deprotonated [M - H]- molecules, diagnostic [M - R]- ions, or odd-electron M*- molecular species. The reaction orientation depends on the thermochemistry of reactions within kinetic controls. First analytical results are presented here for the trace-level detection of several contaminants under NICI/Cl- conditions. Phosphorus-containing compounds (malathion, ethyl parathion, and methyl parathion as representative for pesticides) and nitro-containing compounds (2,4,6-trinitrotoluene for explosive material) have been chosen in order to explore the analytical ability of this promising instrumental coupling.

2.
Anal Chem ; 72(20): 5063-9, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11055729

RESUMO

Negative ion chemical ionization was carried out using a quadrupole ion trap mass spectrometer with selected reactant negative ions, primarily injected from a homemade dual EI/CI external ion source. Hence, selective ion/molecule reactions were provided according to the reaction time, which induce a greater control over bimolecular ionization mechanisms than in conventional a high-pressure ion source combined with beam instruments, where several competitive ionization processes take place mainly due to source conditions (e.g., temperature, pressure, and repeller). By selecting the reactant ions, ion/molecule reactions were specifically produced (i.e., charge exchange, proton transfer, nucleophilic substitution, and/or alpha-beta elimination) with several organic target compounds. Gas-phase reactivity of phosphorus- and nitrogen-containing compounds (such as phosphonates as representative for chemical warfare agents and phosphorothionates, phosphorodithionates, and triazines for pesticides) as well as dinitro aromatic compounds (for pesticides) has been explored, in the present work, to ensure further unambiguous detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...