Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960949

RESUMO

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Proteínas Recombinantes de Fusão , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Proteínas Recombinantes de Fusão/genética , Camundongos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Interleucina-15/metabolismo
2.
Elife ; 122023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910431

RESUMO

Cardiac muscle has the highest mitochondrial density of any human tissue, but mitochondrial dysfunction is not a recognized cause of isolated cardiomyopathy. Here, we determined that the rare mitofusin (MFN) 2 R400Q mutation is 15-20× over-represented in clinical cardiomyopathy, whereas this specific mutation is not reported as a cause of MFN2 mutant-induced peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Accordingly, we interrogated the enzymatic, biophysical, and functional characteristics of MFN2 Q400 versus wild-type and CMT2A-causing MFN2 mutants. All MFN2 mutants had impaired mitochondrial fusion, the canonical MFN2 function. Compared to MFN2 T105M that lacked catalytic GTPase activity and exhibited normal activation-induced changes in conformation, MFN2 R400Q and M376A had normal GTPase activity with impaired conformational shifting. MFN2 R400Q did not suppress mitochondrial motility, provoke mitochondrial depolarization, or dominantly suppress mitochondrial respiration like MFN2 T105M. By contrast to MFN2 T105M and M376A, MFN2 R400Q was uniquely defective in recruiting Parkin to mitochondria. CRISPR editing of the R400Q mutation into the mouse Mfn2 gene induced perinatal cardiomyopathy with no other organ involvement; knock-in of Mfn2 T105M or M376V did not affect the heart. RNA sequencing and metabolomics of cardiomyopathic Mfn2 Q/Q400 hearts revealed signature abnormalities recapitulating experimental mitophagic cardiomyopathy. Indeed, cultured cardiomyoblasts and in vivo cardiomyocytes expressing MFN2 Q400 had mitophagy defects with increased sensitivity to doxorubicin. MFN2 R400Q is the first known natural mitophagy-defective MFN2 mutant. Its unique profile of dysfunction evokes mitophagic cardiomyopathy, suggesting a mechanism for enrichment in clinical cardiomyopathy.


Mitochondria are organelles with an essential role in providing energy to the cells of the body. If damaged, they are repaired by fusing and exchanging contents with sister mitochondria in a process that requires mitofusin proteins. While mutations in the gene for mitofusin 2 have been linked to nerve damage, they do not appear to affect the heart ­ despite high concentrations of mitochondria in heart muscle cells. However, previous research showed that experimentally disrupting the programmed removal of mitochondria, a process also regulated by mitofusin 2, can cause heart muscle disease known as cardiomyopathy. This suggests that mutations affecting different mitofusin 2 roles might harm individual cell types in different ways. To investigate, Franco et al. carried out a genetic screen of people with cardiomyopathy, identifying a rare mitofusin 2 mutation, called R400Q, that was more common in this group. Experiments showed that R400Q caused cardiomyopathy in mice and affected mitochondrial repair and replacement, but not movement. By contrast, a mutation linked to Charcot-Marie-Tooth disease type 2A ­ which causes nerve damage ­ affected mitochondrial movement but not clearance, leading to nerve cell damage but not cardiomyopathy. This led Franco et al. to suggest that mitochondrial movement is central to nerve cell health, whereas mitochondrial repair and replacement plays an important role in cardiac development. Genetic cardiomyopathies affect around 1 in 500 people, but only half of the gene mutations responsible are known. These results suggest that mutations affecting mitochondrial quality control factors could be involved, highlighting a direction for future studies into modifiers of cardiomyopathy.


Assuntos
Cardiomiopatias , Doença de Charcot-Marie-Tooth , Gravidez , Feminino , Humanos , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , GTP Fosfo-Hidrolases/genética , Cardiomiopatias/genética , Doença de Charcot-Marie-Tooth/genética
3.
J Invest Dermatol ; 143(6): 1052-1061.e3, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642403

RESUMO

Terminally differentiated keratinocytes are critical for epidermal function and are surrounded by involucrin (IVL). Increased IVL expression is associated with a near-selective sweep in European populations compared with those in Africa. This positive selection for increased IVL in the epidermis identifies human adaptation outside of Africa. The functional significance is unclear. We hypothesize that IVL modulates the environmentally sensitive vitamin D receptor (VDR) in the epidermis. We investigated VDR activity in Ivl‒/‒ and wild-type mice using vitamin D agonist (MC903) treatment and comprehensively determined the inflammatory response using single-cell RNA sequencing and associated skin microbiome changes using 16S bacterial phylotyping. VDR activity and target gene expression were reduced in Ivl‒/‒ mouse skin, with decreased MC903-mediated skin inflammation and significant reductions in CD4+ T cells, basophils, macrophages, monocytes, and type II basal keratinocytes and an increase in suprabasal keratinocytes. Coinciding with the dampened MC903-mediated inflammation, the skin microbiota of Ivl‒/‒ mice was more stable than that of the wild-type mice, which exhibited an MC903-responsive increase in Bacteroidetes and a decrease in Firmicutes. Together, our studies in Ivl‒/‒ mice identify a functional role for IVL to positively impact VDR activity and suggest an emerging IVL/VDR paradigm for adaptation in the human epidermis.


Assuntos
Epiderme , Receptores de Calcitriol , Camundongos , Humanos , Animais , Receptores de Calcitriol/metabolismo , Epiderme/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Inflamação/metabolismo
4.
Nat Commun ; 12(1): 2557, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963188

RESUMO

The genetic modules that contribute to human evolution are poorly understood. Here we investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Composite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU-specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/genética , Precursores de Proteínas/genética , Pele/metabolismo , África , Alelos , Animais , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Bases de Dados Genéticas , Frequência do Gene , Haplótipos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Precursores de Proteínas/metabolismo , Locos de Características Quantitativas , RNA-Seq , Sequências Reguladoras de Ácido Nucleico
5.
Exp Dermatol ; 27(9): 989-992, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29791750

RESUMO

Filaggrin (FLG) loss-of-function (LOF) variants are a major risk factor for the common inflammatory skin disease, atopic dermatitis (AD) and are often population-specific. African-American (AA) children are disproportionately affected with AD, often later developing asthma and/or allergic rhinitis and comprise an atopy health disparity group for which the role of FLG LOF is not well known. Discovery of FLG LOF using exome sequencing is challenging given the known difficulties for accurate short-read alignment to FLG's high homology repeat variation. Here, we employed an array-based sequencing approach to tile across each FLG repeat and discover FLG LOF in a well-characterized cohort of AA children with moderate-to-severe AD. Five FLG LOF were identified in 23% of our cohort. Two novel FLG LOF singletons, c.488delG and p.S3101*, were discovered as well as p.R501*, p.R826* and p.S3316* previously reported for AD. p.S3316* (rs149484917) is likely an African ancestral FLG LOF, reported in African individuals in ExAC (Exome Aggregation Consortium), Exome Variant Server (ESP), and 4 African 1000G population databases (ESN, MSL, ASW, and ACB). The proportion of FLG LOF (11.5%) among the total FLG alleles in our cohort was significantly higher in comparisons with FLG LOF reported for African individuals in ExAC (2.5%; P = 4.3 × 10-4 ) and ESP (1.7%; P = 3.5 × 10-5 ) suggesting a disease-enrichment effect for FLG LOF. Our results demonstrate the utility of array-based sequencing in discovering FLG LOF, including novel and population-specific, which are of higher prevalence in our AA severe AD group than previously reported.


Assuntos
Negro ou Afro-Americano/genética , Dermatite Atópica/genética , Proteínas de Filamentos Intermediários/genética , Mutação com Perda de Função , Análise de Sequência de DNA/métodos , Adolescente , Alelos , Criança , Pré-Escolar , Exoma , Proteínas Filagrinas , Humanos , Lactente , Análise de Sequência com Séries de Oligonucleotídeos , Índice de Gravidade de Doença
6.
Nature ; 556(7702): 501-504, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670287

RESUMO

Metabolic regulation has been recognized as a powerful principle guiding immune responses. Inflammatory macrophages undergo extensive metabolic rewiring 1 marked by the production of substantial amounts of itaconate, which has recently been described as an immunoregulatory metabolite 2 . Itaconate and its membrane-permeable derivative dimethyl itaconate (DI) selectively inhibit a subset of cytokines 2 , including IL-6 and IL-12 but not TNF. The major effects of itaconate on cellular metabolism during macrophage activation have been attributed to the inhibition of succinate dehydrogenase2,3, yet this inhibition alone is not sufficient to account for the pronounced immunoregulatory effects observed in the case of DI. Furthermore, the regulatory pathway responsible for such selective effects of itaconate and DI on the inflammatory program has not been defined. Here we show that itaconate and DI induce electrophilic stress, react with glutathione and subsequently induce both Nrf2 (also known as NFE2L2)-dependent and -independent responses. We find that electrophilic stress can selectively regulate secondary, but not primary, transcriptional responses to toll-like receptor stimulation via inhibition of IκBζ protein induction. The regulation of IκBζ is independent of Nrf2, and we identify ATF3 as its key mediator. The inhibitory effect is conserved across species and cell types, and the in vivo administration of DI can ameliorate IL-17-IκBζ-driven skin pathology in a mouse model of psoriasis, highlighting the therapeutic potential of this regulatory pathway. Our results demonstrate that targeting the DI-IκBζ regulatory axis could be an important new strategy for the treatment of IL-17-IκBζ-mediated autoimmune diseases.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Proteínas I-kappa B/metabolismo , Succinatos/metabolismo , Animais , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Psoríase/tratamento farmacológico , Psoríase/patologia , Estresse Fisiológico/efeitos dos fármacos , Succinatos/administração & dosagem , Succinatos/química , Succinatos/farmacologia , Succinatos/uso terapêutico , Receptores Toll-Like/imunologia
7.
Science ; 358(6366): 1046-1051, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170234

RESUMO

Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Nitritos/metabolismo , Bactérias/citologia , Bactérias/genética , Hibridização in Situ Fluorescente , Metagenômica , Oceanos e Mares , Oxirredução , Água do Mar/microbiologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...