Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 16(2): 293-310, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793689

RESUMO

Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.

2.
PeerJ ; 10: e13146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341040

RESUMO

Anthropogenic changes in the natural environment have led to alarming rates of biodiversity loss, resulting in a more urgent need for conservation. Although there is an increasing cognizance of the importance of incorporating biodiversity data into conservation, the accuracy of the inferences generated from these records can be highly impacted by gaps and biases in the data. Because of the Philippines' status as a biodiversity hotspot, the assessment of potential gaps and biases in biodiversity documentation in the country can be a critical step in the identification of priority research areas for conservation applications. In this study, we systematically assessed biodiversity data on animal and plant taxa found in the Philippines by examining the extent of metadata gaps, taxonomic biases, and spatial biases in DNA barcode data while using species occurrence data as a backdrop of the 'Philippines' biodiversity. These barcode and species occurrence datasets were obtained from public databases, namely: GenBank, Barcode of Life Data System and Global Biodiversity Information Facility. We found that much of the barcode data had missing information on either records and publishing, geolocation, or taxonomic metadata, which consequently, can limit the usability of barcode data for further analyses. We also observed that the amount of barcode data can be directly associated with the amount of species occurrence data available for a particular taxonomic group and location-highlighting the potential sampling biases in the barcode data. While the majority of barcode data came from foreign institutions, there has been an increase in local efforts in recent decades. However, much of the contribution to biodiversity documentation only come from institutions based in Luzon.


Assuntos
Código de Barras de DNA Taxonômico , Metadados , Animais , Código de Barras de DNA Taxonômico/métodos , Filipinas , Biodiversidade , Documentação , Viés
3.
Evol Appl ; 13(9): 2449-2459, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005233

RESUMO

INTRODUCTION: Brown planthoppers (Nilaparvata lugens) are the most serious insect pests of rice, one of the world's most important staple crops. They reproduce year-round in the tropical parts of their distribution, but cannot overwinter in the temperate areas where they occur, and invade seasonally from elsewhere. Decades of research have not revealed their source unambiguously. METHODS AND RESULTS: We sequenced the genomes of brown planthopper populations from across temperate and tropical parts of their distribution and show that the Indochinese peninsula is the major source of migration into temperate China. The Philippines, once considered a key source, is not significant, with little evidence for their migration into China. We find support for immigration from the west of China contributing to these regional dynamics. DISCUSSION: The lack of connectivity between the Philippine population and the mainland Chinese populations explains the different evolution of Imidacloprid resistance in these populations. This study highlights the promise of whole-genome sequence data to understand migration when gene flow is high-a situation that has been difficult to resolve using traditional genetic markers.

4.
Evol Appl ; 13(3): 515-532, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32431733

RESUMO

Introduced species can impose profound impacts on the evolution of receiving communities with which they interact. If native and introduced taxa remain reproductively semi-isolated, human-mediated secondary contact may promote genetic exchange across newly created hybrid zones, potentially impacting native genetic diversity and invasive species spread. Here, we investigate the contributions of recent divergence histories and ongoing (post-introduction) gene flow between the invasive marine mussel, Mytilus galloprovincialis, and a morphologically indistinguishable and taxonomically contentious native Australian taxon, Mytilus planulatus. Using transcriptome-wide markers, we demonstrate that two contemporary M. galloprovincialis introductions into south-eastern Australia originate from genetically divergent lineages from its native range in the Mediterranean Sea and Atlantic Europe, where both introductions have led to repeated instances of admixture between introduced and endemic populations. Through increased genome-wide resolution of species relationships, combined with demographic modelling, we validate that mussels sampled in Tasmania are representative of the endemic Australian taxon (M. planulatus), but share strong genetic affinities to M. galloprovincialis. Demographic inferences indicate late-Pleistocene divergence times and historical gene flow between the Tasmanian endemic lineage and northern M. galloprovincialis, suggesting that native and introduced taxa have experienced a period of historical isolation of at least 100,000 years. Our results demonstrate that many genomic loci and sufficient sampling of closely related lineages in both sympatric (e.g. Australian populations) and allopatric (e.g. northern hemisphere Mytilus taxa) ranges are necessary to accurately (a) interpret patterns of intraspecific differentiation and to (b) distinguish contemporary invasive introgression from signatures left by recent divergence histories in high dispersal marine species. More broadly, our study fills a significant gap in systematic knowledge of native Australian biodiversity and sheds light on the intrinsic challenges for invasive species research when native and introduced species boundaries are not well defined.

5.
Mitochondrial DNA ; 24(5): 584-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23530464

RESUMO

Integration of genetic connectivity information in effective marine reserve (MR) design is important in sustaining marine biodiversity. Here, genetic connectivity based on mitochondrial DNA (mtDNA) of three reef fish species, namely Epinephelus merra (n = 67; 32 from Bolinao, 14 from Alaminos, and 21 from Masinloc), Parupeneus multifasciatus (n = 23; 12 from Bolinao and 11 from Masinloc), and Odonus niger (n = 35; 21 from Mabini and 14 from Tingloy), sampled across western Luzon, Philippines, was inferred by assessing their genetic diversity, population genetic structure, and historical demography. The results show high haplotype and nucleotide diversity in the three species. Tests for population structure indicate high gene flow and no spatial genetic structuring for the three species. Mismatch analyses suggest unimodal distribution for E. merra and P. multifasciatus, but bimodal distribution for O. niger. Even with differences in mismatch distributions, all the three species exhibit low raggedness index indicating demographic population expansion. The bimodal distribution of O. niger could be attributed to the mixing of two isolated populations. High gene flow between sampling locations implies genetic exchanges and connectivity between many small MRs and fishing grounds in western Luzon, Philippines, at a scale similar to our study. This research is among the first few to elucidate the high genetic connectivity of reef fish communities across the Philippines (here western Luzon), but it also calls for more support (i.e. government and academia) for genetic research that aims to (1) understand the maintenance of megadiversity of the country and (2) search for effective biodiversity conservation options for the coral reefs.


Assuntos
Conservação dos Recursos Naturais/métodos , DNA Mitocondrial/genética , Peixes/genética , Fluxo Gênico/fisiologia , Animais , Biodiversidade , Recifes de Corais , Espécies em Perigo de Extinção , Filipinas , Filogenia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...