Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mov Disord Clin Pract ; 11(7): 795-807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38610081

RESUMO

BACKGROUND: Quantitative 3D movement analysis using inertial measurement units (IMUs) allows for a more detailed characterization of motor patterns than clinical assessment alone. It is essential to discriminate between gait features that are responsive or unresponsive to current therapies to better understand the underlying pathophysiological basis and identify potential therapeutic strategies. OBJECTIVES: This study aims to characterize the responsiveness and temporal evolution of different gait subcomponents in Parkinson's disease (PD) patients in their OFF and various ON states following levodopa administration, utilizing both wearable sensors and the gold-standard MDS-UPDRS motor part III. METHODS: Seventeen PD patients were assessed while wearing a full-body set of 15 IMUs in their OFF state and at 20-minute intervals following the administration of a supra-threshold levodopa dose. Gait was reconstructed using a biomechanical model of the human body to quantify how each feature was modulated. Comparisons with non-PD control subjects were conducted in parallel. RESULTS: Significant motor changes were observed in both the upper and lower limbs according to the MDS-UPDRS III, 40 minutes after levodopa intake. IMU-assisted 3D kinematics detected significant motor alterations as early as 20 minutes after levodopa administration, particularly in upper limbs metrics. Although all "pace-domain" gait features showed significant improvement in the Best-ON state, most rhythmicity, asymmetry, and variability features did not. CONCLUSION: IMUs are capable of detecting motor alterations earlier and in a more comprehensive manner than the MDS-UPDRS III. The upper limbs respond more rapidly to levodopa, possibly reflecting distinct thresholds to levodopa across striatal regions.


Assuntos
Antiparkinsonianos , Marcha , Levodopa , Doença de Parkinson , Humanos , Levodopa/uso terapêutico , Levodopa/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Masculino , Fenômenos Biomecânicos , Feminino , Idoso , Pessoa de Meia-Idade , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/administração & dosagem , Marcha/efeitos dos fármacos , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Índice de Gravidade de Doença
2.
Sci Total Environ ; 929: 172535, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641109

RESUMO

Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (µFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.


Assuntos
Aquicultura , Bass , Metais , Microplásticos , Poluentes Químicos da Água , Bass/metabolismo , Animais , Poluentes Químicos da Água/análise , Microplásticos/análise , Humanos , Metais/análise , Inocuidade dos Alimentos , Monitoramento Ambiental , Contaminação de Alimentos/análise , Medição de Risco , Alimentos Marinhos/análise , Exposição Ambiental/estatística & dados numéricos
3.
Heliyon ; 9(8): e18164, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520993

RESUMO

Eye gaze is a prominent feature of human social lives, but little is known on whether fitting eyes on machines makes humans trust them more. In this study we compared subjective and objective markers of human trust when collaborating with eyed and non-eyed robots of the same type. We used virtual reality scenes in which we manipulated distance and the presence of eyes on a robot's display during simple collaboration scenes. We found that while collaboration with eyed cobots resulted in slightly higher subjective trust ratings, the objective markers such as pupil size and task completion time indicated it was in fact less comfortable to collaborate with eyed robots. These findings are in line with recent suggestions that anthropomorphism may be actually a detrimental feature of collaborative robots. These findings also show the complex relationship between human objective and subjective markers of trust when collaborating with artificial agents.

4.
Chemosphere ; 335: 139055, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268227

RESUMO

Plastic particles (PLs) are ubiquitous in aquatic ecosystems, and aquaculture production is susceptible to contamination from external or endogenous sources. This study investigated PL presence in water, fish feed and body sites of 55 European seabass produced in a recirculating aquaculture system (RAS). Fish morphometric parameters and health status biomarkers were determined. A total of 372 PLs were recovered from water (37.2 PL/L), 118 PLs from feed (3.9 PL/g), and 422 from seabass (0.7 PL/g fish; all body sites analysed). All 55 specimens had PLs in at least two of the four body sites analysed. Concentrations were higher in the gastrointestinal tract (GIT; 1.0 PL/g) and gills (0.8 PL/g) than in the liver (0.8 PL/g) and muscle (0.4 PL/g). PL concentration in GIT was significantly higher than in muscle. Black, blue, and transparent fibres made of man-made cellulose/rayon and polyethylene terephthalate were the most common PLs in water and seabass, while black fragments of phenoxy resin were the most common in feed. The levels of polymers linked to RAS components (polyethylene, polypropylene, and polyvinyl chloride) were low, suggesting a limited contribution to the overall PL levels found in water and/or fish. The mean PL size recovered from GIT (930 µm) and gills (1047 µm) was significantly larger than those found in the liver (647 µm) and dorsal muscle (425 µm). Considering all body sites, PLs bioconcentrated in seabass (BCFFish >1), but their bioaccumulation did not occur (BAFFish <1). No significant differences were observed in oxidative stress biomarkers between fish with low (<7) and high (≥7) PL numbers. These findings suggest that fish produced in RAS are mainly exposed to MPs through water and feed. Further monitoring under commercial conditions and risk assessment are warranted to identify potential threats to fish and human health and define mitigating measures.


Assuntos
Bass , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos/análise , Água/análise , Ecossistema , Aquicultura , Biomarcadores , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Artigo em Inglês | MEDLINE | ID: mdl-35805592

RESUMO

Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in the sand of the Azorean beach Prainha, Terceira Island, Portugal. Remediation measures were promptly implemented, including sand removal and the spraying of chlorine to restore the sand quality. To determine the source of the fecal contamination, during the first campaign, supratidal sand samples were collected from several sites along the beach, followed by microbial source tracking (MST) analyses of Bacteroides marker genes for five animal species, including humans. Some of the sampling sites revealed the presence of marker genes from dogs, seagulls, and ruminants. Making use of the information on biological sources originating partially from dogs, the municipality enforced restrictive measures for dog-walking at the beach. Subsequent sampling campaigns detected low FIB contamination due to the mitigation and remediation measures that were undertaken. This is the first case study where the MST approach was used to determine the contamination sources in the supratidal sand of a coastal beach. Our results show that MST can be an essential tool to determine sources of fecal contamination in the sand. This study shows the importance of holistic management of beaches that should go beyond water quality monitoring for FIB, putting forth evidence for beach sand monitoring.


Assuntos
Bactérias/isolamento & purificação , Praias/normas , Areia/microbiologia , Poluição da Água , Animais , Bactérias/classificação , Bactérias/genética , Bacteroides/genética , Bacteroides/isolamento & purificação , Charadriiformes , Cães , Monitoramento Ambiental/métodos , Fezes/microbiologia , Portugal , Ruminantes , Microbiologia da Água , Poluição da Água/análise
6.
J Pers Med ; 12(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629247

RESUMO

Ecological evaluation of gait using mobile technologies provides crucial information regarding the evolution of symptoms in Parkinson's disease (PD). However, the reliability and validity of such information may be influenced by the smartphone's location on the body. This study analyzed how the smartphone location affects the assessment of PD patients' gait in a free-living environment. Twenty PD patients (mean ± SD age, 64.3 ± 10.6 years; 9 women (45%) performed 3 trials of a 250 m outdoor walk using smartphones in 5 different body locations (pants pocket, belt, hand, shirt pocket, and a shoulder bag). A method to derive gait-related metrics from smartphone sensors is presented, and its reliability is evaluated between different trials as well as its concurrent validity against optoelectronic and smartphone criteria. Excellent relative reliability was found with all intraclass correlation coefficient values above or equal to 0.85. High absolute reliability was observed in 21 out of 30 comparisons. Bland-Altman analysis revealed a high level of agreement (LoA between 4.4 and 17.5%), supporting the use of the presented method. This study advances the use of mobile technology to accurately and reliably quantify gait-related metrics from PD patients in free-living walking regardless of the smartphone's location on the body.

7.
Environ Pollut ; 304: 119199, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35337890

RESUMO

Under the climate change context, warming Southern Ocean waters may allow mercury (Hg) to become more bioavailable to the Antarctic marine food web (i.e., ice-stored Hg release and higher methylation rates by microorganisms), whose biomagnification processes are poorly documented. Biomagnification of Hg in the food web of the Antarctic Peninsula, one of the world's fastest-warming regions, was examined using carbon (δ13C) and nitrogen (δ15N) stable isotope ratios for estimating feeding habitat and trophic levels, respectively. The stable isotope signatures and total Hg (T-Hg) concentrations were measured in Antarctic krill Euphausia superba and several Antarctic predator species, including seabirds (gentoo penguins Pygoscelis papua, chinstrap penguins Pygoscelis antarcticus, brown skuas Stercorarius antarcticus, kelp gulls Larus dominicanus, southern giant petrels Macronectes giganteus) and marine mammals (southern elephant seals Mirounga leonina). Significant differences in δ13C values among species were noted with a great overlap between seabird species and M. leonina. As expected, significant differences in δ15N values among species were found due to interspecific variations in diet-related to their trophic position within the marine food web. The lowest Hg concentrations were registered in E. superba (0.007 ± 0.008 µg g-1) and the highest values in M. giganteus (12.090 ± 14.177 µg g-1). Additionally, a significant positive relationship was found between Hg concentrations and trophic levels (reflected by δ15N values), biomagnifying nearly 2 times its concentrations at each level. Our results support that trophic interaction is the major pathway for Hg biomagnification in Southern Ocean ecosystems and warn about an increase in the effects of Hg on long-lived (and high trophic level) Antarctic predators under climate change in the future.


Assuntos
Charadriiformes , Euphausiacea , Mercúrio , Spheniscidae , Animais , Regiões Antárticas , Bioacumulação , Charadriiformes/metabolismo , Ecossistema , Monitoramento Ambiental/métodos , Euphausiacea/metabolismo , Cadeia Alimentar , Mamíferos/metabolismo , Mercúrio/análise , Spheniscidae/metabolismo
8.
Sensors (Basel) ; 21(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34372208

RESUMO

Mobile health (mHealth) has emerged as a potential solution to providing valuable ecological information about the severity and burden of Parkinson's disease (PD) symptoms in real-life conditions. Objective: The objective of our study was to explore the feasibility and usability of an mHealth system for continuous and objective real-life measures of patients' health and functional mobility, in unsupervised settings. Methods: Patients with a clinical diagnosis of PD, who were able to walk unassisted, and had an Android smartphone were included. Patients were asked to answer a daily survey, to perform three weekly active tests, and to perform a monthly in-person clinical assessment. Feasibility and usability were explored as primary and secondary outcomes. An exploratory analysis was performed to investigate the correlation between data from the mKinetikos app and clinical assessments. Results: Seventeen participants (85%) completed the study. Sixteen participants (94.1%) showed a medium-to-high level of compliance with the mKinetikos system. A 6-point drop in the total score of the Post-Study System Usability Questionnaire was observed. Conclusions: Our results support the feasibility of the mKinetikos system for continuous and objective real-life measures of a patient's health and functional mobility. The observed correlations of mKinetikos metrics with clinical data seem to suggest that this mHealth solution is a promising tool to support clinical decisions.


Assuntos
Aplicativos Móveis , Doença de Parkinson , Telemedicina , Estudos de Viabilidade , Humanos , Doença de Parkinson/diagnóstico , Smartphone
9.
BMC Neurol ; 21(1): 331, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454453

RESUMO

BACKGROUND: Gait impairments are among the most common and impactful symptoms of Parkinson's disease (PD). Recent technological advances aim to quantify these impairments using low-cost wearable systems for use in either supervised clinical consultations or long-term unsupervised monitoring of gait in ecological environments. However, very few of these wearable systems have been validated comparatively to a criterion of established validity. OBJECTIVE: We developed two movement analysis solutions (3D full-body kinematics based on inertial sensors, and a smartphone application) in which validity was assessed versus the optoelectronic criterion in a population of PD patients. METHODS: Nineteen subjects with PD (7 female) participated in the study (age: 62 ± 12.27 years; disease duration: 6.39 ± 3.70 years; HY: 2 ± 0.23). Each participant underwent a gait analysis whilst barefoot, at a self-selected speed, for a distance of 3 times 10 m in a straight line, assessed simultaneously with all three systems. RESULTS: Our results show excellent agreement between either solution and the optoelectronic criterion. Both systems differentiate between PD patients and healthy controls, and between PD patients in ON or OFF medication states (normal difference distributions pooled from published research in PD patients in ON and OFF states that included an age-matched healthy control group). Fair to high waveform similarity and mean absolute errors below the mean relative orientation accuracy of the equipment were found when comparing the angular kinematics between the full-body inertial sensor-based system and the optoelectronic criterion. CONCLUSIONS: We conclude that the presented solutions produce accurate results and can capture clinically relevant parameters using commodity wearable sensors or a simple smartphone. This validation will hopefully enable the adoption of these systems for supervised and unsupervised gait analysis in clinical practice and clinical trials.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Fenômenos Biomecânicos , Feminino , Marcha , Análise da Marcha , Humanos , Doença de Parkinson/diagnóstico
10.
Artigo em Inglês | MEDLINE | ID: mdl-33925412

RESUMO

The COVID-19 pandemic has important consequences for the mental health of populations. Patients with cancer, already at risk for poor mental health outcomes, are not expected to be spared from these consequences, prompting the need for health services to improve responsiveness. This article presents the research protocol for an implementation study designed to describe the uptake of a well-studied and recognized system for the treatment of depression and anxiety (Stepped-care) during the specific context of a Pandemic in an oncological site. The system set-up will be assisted by a digital platform (MoodUP), where patients undergoing cancer treatment will be screened for anxiety and depressive symptoms, triaged by severity level and algorithm-matched to recommended interventions. Patients undergoing cancer treatment at a cancer clinic in Portugal will be invited to subscribe to the MoodUP platform where they will complete a self-reported questionnaire (Hospital Anxiety and Depression Scale) to screen their anxiety and depressive symptoms. Data will be instantly collected, and an algorithm will activate severity-matched intervention suggestions, through a case manager that will coordinate care. The specific objectives of this study will be to describe the implementation and acceptability of the care system by patients and staff, the barriers to and facilitators of implementation, the proportion of patients accessing the system and their pathways through the various stepped-care interventions, and patient perceptions regarding the feasibility and appropriateness of the eHealth platform. Moreover, exploratory analyses will be conducted to describe patterns of anxiety and depression symptoms variation across all patients, as well as within sociodemographically, clinically and contextually characterized subgroups, to characterize their care needs and access, as well as to explore for whom the MoodUP care system may be more appropriate. This study is expected to improve processes for collaborative mental healthcare in oncology and accelerate the digitalization of services, towards the improvement of mental healthcare access, and management of high-risk patients, during the COVID-19 pandemic.


Assuntos
COVID-19 , Neoplasias , Humanos , Saúde Mental , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , Portugal/epidemiologia , SARS-CoV-2
11.
Sensors (Basel) ; 21(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924207

RESUMO

Current clinical practice lacks consistent evidence in the management of scapular dyskinesis. This study aims to determine the short- and long-term effects of a scapular-focused exercise protocol facilitated by real-time electromyographic biofeedback (EMGBF) on pain and function, in individuals with rotator cuff related pain syndrome (RCS) and anterior shoulder instability (ASI). One-hundred and eighty-three patients were divided into two groups (n = 117 RCS and n = 66 ASI) and guided through a structured exercise protocol, focusing on scapular dynamic control. Values of pain and function (shoulder pain and disability index (SPADI) questionnaire, complemented by the numeric pain rating scale (NPRS) and disabilities of the arm, shoulder, and hand (DASH) questionnaire) were assessed at the initial, 4-week, and 2-year follow-up and compared within and between. There were significant differences in pain and function improvement between the initial and 4-week assessments. There were no differences in the values of DASH 1st part and SPADI between the 4-week and 2-year follow-up. There were no differences between groups at the baseline and long-term, except for DASH 1st part and SPADI (p < 0.05). Only 29 patients (15.8%) had a recurrence episode at follow-up. These results provide valuable information on the positive results of the protocol in the short- and long-term.


Assuntos
Instabilidade Articular , Articulação do Ombro , Biorretroalimentação Psicológica , Eletromiografia , Humanos , Estudos Prospectivos , Ombro , Dor de Ombro
12.
Environ Pollut ; 275: 116620, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581632

RESUMO

Biomagnification of mercury (Hg) in the Scotia Sea food web of the Southern Ocean was examined using the stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) as proxies for trophic level and feeding habitat, respectively. Total Hg and stable isotopes were measured in samples of particulate organic matter (POM), zooplankton, squid, myctophid fish, notothenioid fish and seabird tissues collected in two years (austral summers 2007/08 and 2016/17). Overall, there was extensive overlap in δ13C values across taxonomic groups suggesting similarities in habitats, with the exception of the seabirds, which showed some differences, possibly due to the type of tissue analysed (feathers instead of muscle). δ15N showed increasing enrichment across groups in the order POM to zooplankton to squid to myctophid fish to notothenioid fish to seabirds. There were significant differences in δ15N and δ13C values among species within taxonomic groups, reflecting inter-specific variation in diet. Hg concentrations increased with trophic level, with the lowest values in POM (0.0005 ± 0.0002 µg g-1 dw) and highest values in seabirds (3.88 ± 2.41 µg g-1 in chicks of brown skuas Stercorarius antarcticus). Hg concentrations tended to be lower in 2016/17 than in 2007/08 for mid-trophic level species (squid and fish), but the opposite was found for top predators (i.e. seabirds), which had higher levels in the 2016/17 samples. This may reflect an interannual shift in the Scotia Sea marine food web, caused by the reduced availability of a key prey species, Antarctic krill Euphausia superba. In 2016/17, seabirds would have been forced to feed on higher trophic-level prey, such as myctophids, that have higher Hg burdens. These results suggest that changes in the food web are likely to affect the pathway of mercury to Southern Ocean top predators.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Regiões Antárticas , Bioacumulação , Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Isótopos de Nitrogênio/análise , Oceanos e Mares , Poluentes Químicos da Água/análise
14.
Mar Pollut Bull ; 158: 111447, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32753223

RESUMO

As the role of mercury is poorly known in Southern Ocean biota, the total mercury (T-Hg) concentrations were evaluated in upper/lower beaks, digestive gland, gills and mantle muscle of Adelieledone polymorpha and Pareledone turqueti, two of the most abundant octopod species around South Georgia. Beaks had the lowest T-Hg concentrations (A. polymorpha: [T-Hg]Upper = 27.2 ± 12.9 ng∙g-1 and [T-Hg]Lower = 27.5 ± 20.0 ng∙g-1; P. turqueti: [T-Hg]Upper = 34.6 ± 13.9 ng∙g-1 and [T-Hg]Lower = 56.8 ± 42.0 ng∙g-1), followed by gills and muscle. The highest values were recorded in the digestive gland (A. polymorpha: 251.6 ± 69.7 ng∙g-1; P. turqueti: 347.0 ± 177.0 ng∙g-1). Significant relationships were found between the concentrations of T-Hg in the beaks and muscle of A. polymorpha (T-Hg in muscle is 10 times higher than in beaks). This study shows that beaks can be used as proxy for T-Hg in muscle for some octopod species, and a helpful tool for estimating total Hg body burden from beaks.


Assuntos
Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Regiões Antárticas , Bico/química , Monitoramento Ambiental , Ilhas
15.
J Parkinsons Dis ; 10(3): 843-853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32417796

RESUMO

BACKGROUND: Gait impairments are common and highly disabling for Parkinson's disease (PD) patients. With the development of technology-based tools, it is now possible to measure the spatiotemporal parameters of gait with a reduced margin of error, thereby enabling a more accurate characterization of impairment. OBJECTIVE: To summarize and critically appraise the characteristics of technology-based gait analysis in PD and to provide mean and standard deviation values for spatiotemporal gait parameters. METHODS: A systematic review was conducted using the databases CENTRAL, MEDLINE, Embase, and PEDro from their inception to September 2019 to identify all observational and experimental studies conducted in PD or atypical parkinsonism that included a technology-based gait assessment. Two reviewers independently screened citations and extracted data. RESULTS: We included 95 studies, 82.1% (n = 78) reporting a laboratory gait assessment and 61.1% (n = 58 studies) using a wearable sensor. The most frequently reported parameters were gait velocity, stride and step length, and cadence. A statistically significant difference was found when comparing the mean values of each of these parameters in PD patients versus healthy controls. No statistically significant differences were found in the mean value of the parameters when comparing wearable versus non-wearable sensors, different types of wearable sensors, and different sensor locations. CONCLUSION: Our results provide useful information for performing objective technology-based gait assessment in PD, as well as mean values to better interpret the results. Further studies should explore the clinical meaningfulness of each parameter and how they behave in a free-living context and throughout disease progression.


Assuntos
Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino
16.
Mov Disord Clin Pract ; 7(2): 129-139, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32071930

RESUMO

BACKGROUND: Functional mobility (FM) is a person's ability to move to accomplish activities of daily living; it bridges the concepts of mobility and functional ability. There is frequently a loss of FM in Parkinson's disease (PD). Several instruments have been used to assess this concept in PD; however, there is no consensus on which are the most appropriate. OBJECTIVE: We aimed to identify and critically appraise which measurement instruments have been used to assess FM. METHODS: A systematic review was conducted using the databases CENTRAL, MEDLINE, Embase, and PEDro from their inception to January 2019 to identify all observational and experimental studies conducted in PD or atypical parkinsonism that included an FM assessment. Two reviewers independently screened citations, extracted data, and assessed clinimetric properties. RESULTS: We included 95 studies that assessed FM in PD. Fifty-five (57.9%) studies mentioned FM in the article, and 39 (41.1%) specified the measurement tools used to evaluate FM. FM was the primary outcome in 12 (12.6%) studies. The Timed Up and Go test was the most frequently used measurement tool. Only one study presented a definition of FM. Several overlapping terms were used, the most common being mobility. CONCLUSION: Several studies reported the use of FM measurement tools in PD, though with frequent misconceptions, an inadequate context of use, or suboptimal assessment. We propose the establishment of the concept of FM applied to PD, followed by the adequate clinimetric validation of existing measurement tools to provide a comprehensive and reliable evaluation of FM in PD.

17.
Front Neurorobot ; 13: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780916

RESUMO

Musculoskeletal models enable movement scientists to examine muscle function by computing the mechanical work done by muscles during motor tasks. To estimate muscle work accurately requires a model that is physiologically plausible. Previous models of the human shoulder have coupled scapula movement to humeral movement. While coupled movement produces a stereotypical scapulohumeral rhythm, it cannot model shrugging or independent movement of the scapula and humerus. The artificial coupling of humeral elevation to scapular rotation permits muscles that cross the glenohumeral joint, such as the rotator-cuff muscles and deltoids, to do implausible work to elevate and rotate the scapula. In reality, the motion of the scapula is controlled by thoracoscapular muscles, yet the roles of these muscles in shoulder function remains unclear. To elucidate the roles of the thoracoscapular muscles, we developed a shoulder model with an accurate scapulothoracic joint and includes scapular muscles to drive its motion. We used the model to compute the work done by the thoracoscapular muscles during shrugging and arm elevation. We found that the bulk of the work done in upper-extremity tasks is performed by the largest muscles of the shoulder: trapezius, deltoids, pectoralis major, and serratus-anterior. Trapezius and serratus anterior prove to be important synergists in performing upward-rotation of the scapula. We show that the large thoracoscapular muscles do more work than glenohumeral muscles during arm-elevation tasks. The model, experimental data and simulation results are freely available on SimTK.org to enable anyone to explore our results and to perform further studies in OpenSim 4.0.

18.
Mar Environ Res ; 150: 104757, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306868

RESUMO

Sympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: -19.21 ±â€¯1.87‰, mean ±â€¯SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ±â€¯0.40‰, in A. polymorpha, and 7.84 ±â€¯0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ±â€¯0.009  µg g-1, muscle: 0.322 ±â€¯0.088  µg g-1; P. turqueti - beaks: 0.038 ±â€¯0.009  µg g-1; muscle: 0.434 ±â€¯0.128  µg g-1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context.


Assuntos
Bico , Mudança Climática , Cadeia Alimentar , Mercúrio , Animais , Regiões Antárticas , Bico/química , Isótopos de Carbono , Dieta , Ecossistema , Mercúrio/análise , Isótopos de Nitrogênio , Simpatria
19.
Knee Surg Sports Traumatol Arthrosc ; 27(2): 405-411, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30056605

RESUMO

PURPOSE: The proximal tibiofibular joint (PTFJ) is a rather unknown articulation. There is little understanding of its anatomy, physiology, and functional role. The objectives of this research are to describe the normal kinematics of the PTFJ and its relation to the ankle and knee movements. METHODS: Fourteen knees of seven adult fresh frozen whole body cadavers were studied. The proximal tibiofibular joint and ligaments were identified, after which we sequentially sectioned the anterior proximal tibiofibular ligament (APTFL), the posterior proximal tibiofibular ligament (PPTFL), and the interosseous syndesmotic membrane. Models with intact and sectioned ligaments were compared, while the unloaded lower limb was manually mobilized in a pre-defined sequence of combined movements of knee, ankle, and proximal tibiofibular joints. The PTFJ spatial displacement was measured by analyzing the length of a distance vector between two 3D coordinate systems settled over the tibia and fibula. RESULTS: On the unaltered PTFJ, direct grasping of the head of the fibula with the hip in 45° of flexion and the knee in 90° of flexion was found to produce an average displacement of 7 mm. Knee movements caused the greatest spatial displacements, almost ten times the ones produced by ankle flexion/extension. Flexion/extension of the knee caused 1.8 times more displacement than single rotations with the knee flexed to 90°. It was found that the APTFL was an important stabilizer of the PTFJ when this joint is tensioned accommodating the movements of ankle extension and foot eversion. The APTFL was not a significant stabilizer of the PTFJ during direct manipulation of the fibular head when imprinting a manual force with posterior direction. The PPTFL was an important accommodator of ankle flexion, foot inversion and knee flexion. The interosseous syndesmotic membrane also proved to be a significant PTFJ stabilizer in rotational movements of the ankle and knee. CONCLUSIONS: This is the first cadaver study to illustrate the PTFJ normal spatial displacement, thereby contributing to a deeper insight of this joint. The contribution of each ligament for PTFJ stability was described and, based on these findings; a new mechanism of injury was suggested. Surgeons can translate the results of this study into the clinical practice.


Assuntos
Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho/fisiologia , Ligamentos Articulares/fisiologia , Amplitude de Movimento Articular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Front Neurol ; 8: 677, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312115

RESUMO

Miniaturized and wearable sensor-based measurements enable the assessment of Parkinson's disease (PD) motor-related features like never before and hold great promise as non-invasive biomarkers for early and accurate diagnosis, and monitoring the progression of PD. High-fidelity human movement reconstruction and simulation can already be conducted in a clinical setting with increasingly precise and affordable motion technology enabling access to high-quality labeled data on patients' subcomponents of movement (kinematics and kinetics). At the same time, body-worn sensors now allow us to extend some quantitative movement-related measurements to patients' daily living activities. This era of patient movement "cognification" is bringing us previously inaccessible variables that encode patients' movement, and that, together with measures from clinical examinations, poses new challenges in data analysis. We present herein examples of the application of an unsupervised methodology to classify movement behavior in healthy individuals and patients with PD where no specific knowledge on the type of behaviors recorded is needed. We are most certainly leaving the early stage of the exponential curve that describes the current technological evolution and soon will be entering its steep ascent. But there is already a benefit to be derived from current motion technology and sophisticated data science methods to objectively measure parkinsonian impairments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...