Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; : 1-10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754392

RESUMO

INTRODUCTION: X chromosome inactivation (XCI) is an essential mechanism for dosage compensation between females and males in mammals. In females, XCI is controlled by a complex, conserved locus termed the X inactivation center (Xic), in which the lncRNA Xist is the key regulator. However, little is known about the Xic in species with unusual sex chromosomes. The genus Tokudaia includes three rodent species endemic to Japan. Tokudaia osimensis and Tokudaia tokunoshimensis lost the Y chromosome (XO/XO), while Tokudaia muenninki (TMU) acquired a neo-X region by fusion of the X chromosome and an autosome (XX/XY). We compared the gene location and structure in the Xic among Tokudaia species. METHODS: Gene structure of nine genes in Xic was predicted, and the gene location and genome sequences of Xic were compared between mouse and Tokudaia species. The expression level of the gene was confirmed by transcripts per million calculation using RNA-seq data. RESULTS: Compared to mouse, the Xic gene order and location were conserved in Tokudaia species. However, remarkable structure changes were observed in lncRNA genes, Xist and Tsix, in the XO/XO species. In Xist, important functional repeats, B-, C-, D-, and E-repeats, were partially or completely lost due to deletions in these species. RNA-seq data showed that female-specific expression patterns of Xist and Tsix were confirmed in TMU, however, not in the XO/XO species. Additionally, three deletions and one inversion were confirmed in the intergenic region between Jpx and Ftx in the XO/XO species. CONCLUSION: Our findings indicate that even if the Xist and Tsix lncRNAs are expressed, they are incapable of producing a successful and lasting XCI in the XO/XO species. We hypothesized that the significant structure change in the intergenic region of Jpx-Ftx resulted in the inability to perform the XCI, and, as a result, a lack of Xist expression. Our results collectively suggest that structural changes in the Xic occurred in the ancestral lineage of XO/XO species, likely due to the loss of one X chromosome and the Y chromosome as a consequence of the degradation of the XCI system.

2.
Sci Data ; 10(1): 927, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129438

RESUMO

Herein, we present the first high-quality long-read-based chromosome-level genome assemblies and gene annotations of the genomes of three endangered Tokudaia species: Tokudaia osimensis, Tokudaia tokunoshimensis, and Tokudaia muenninki. These species, which are endemic to different islands of the Ryukyu Islands, Japan, exhibited unique karyotypes and sex chromosomal characteristics. The genome assemblies generated using PacBio, Illumina, and Hi-C sequence data consisted of 13 (corresponded to 12 autosomes and one X chromosome), 23 (corresponded to 22 autosomes and one X chromosome), and 23 (corresponded to 21 autosomes and the neo- and ancestral X regions) chromosome-level scaffolds that contained 2,445, 2,477, and 2,661 Mbp of sequence data, respectively. Annotations of protein-coding genes were performed using RNA-Seq-based, homology-based, and Ab initio methods. BUSCO completeness values for every species exceeded 96% for genomes and 98% for genes. These data can be an important resource for contributing to our understanding of species genomes resulting from allopatric speciation and provide insights into mammalian sex-determination mechanisms and sex chromosome evolution.


Assuntos
Genoma , Murinae , Animais , Japão , Murinae/genética , Cromossomo X
3.
Phytopathology ; 113(8): 1387-1393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081724

RESUMO

Strains of Xanthomonas citri pv. malvacearum cause bacterial blight of cotton, a potentially serious threat to cotton production worldwide, including in sub-Saharan countries. Development of disease symptoms, such as water soaking, has been linked to the activity of a class of type 3 effectors, called transcription activator-like (TAL) effectors, which induce susceptibility genes in the host's cells. To gain further insight into the global diversity of the pathogen, to elucidate their repertoires of TAL effector genes, and to better understand the evolution of these genes in the cotton-pathogenic xanthomonads, we sequenced the genomes of three African strains of X. citri pv. malvacearum using nanopore technology. We show that the cotton-pathogenic pathovar of X. citri is a monophyletic lineage containing at least three distinct genetic subclades, which appear to be mirrored by their repertoires of TAL effectors. We observed an atypical level of TAL effector gene pseudogenization, which might be related to resistance genes that are deployed to control the disease. Our work thus contributes to a better understanding of the conservation and importance of TAL effectors in the interaction with the host plant, which can inform strategies for improving resistance against bacterial blight in cotton.

4.
Cytogenet Genome Res ; 162(11-12): 632-643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37271129

RESUMO

X chromosome inactivation (XCI) is an essential mechanism for gene dosage compensation between male and female cells in mammals. The Okinawa spiny rat (Tokudaia muenninki) is a native rodent in Japan with XX/XY sex chromosomes, like most mammals; however, the X chromosome has acquired a neo-X region (Xp) by fusion with an autosome. We previously reported that dosage compensation has not yet evolved in the neo-X region; however, X-inactive-specific transcript (Xist) RNA (long non-coding RNA required for the initiation of XCI) is partially localized in the region. Here, we show that the neo-X region represents an early chromosomal state in the acquisition of XCI by analyses of heterochromatin and Barr body formation. We found no evidence for heterochromatin formation in the neo-X region by R-banding by acridine orange (RBA) assays and immunostaining of H3K27me3. Double-immunostaining of H3K27me3 and HP1, a component of the Barr body, revealed that the entire ancestral X chromosome region (Xq) showed a bipartite folded structure. By contrast, HP1 was not localized to the neo-X region. However, BAC-FISH revealed that the signals of genes on the neo-X region of the inactive X chromosome were concentrated in a narrow region. These findings indicated that although the neo-X region of the inactive X chromosome does not form a complete Barr body structure (e.g., it lacks HP1), it forms a slightly condensed structure. These findings combined with the previously reported partial binding of Xist RNA suggest that the neo-X region exhibits incomplete inactivation. This may represent an early chromosomal state in the acquisition of the XCI mechanism.

5.
Front Plant Sci ; 12: 782663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185949

RESUMO

DNA barcodes are standardized sequences that range between 400 and 800 bp, vary at different taxonomic levels, and make it possible to assign sequences to species that have been previously taxonomically characterized. Several DNA barcodes have been postulated for plants, nonetheless, their classification potential has not been evaluated for metabarcoding, and as a result, it would appear as none of them excels above the others in this area. One tool that has been widely used and served as a baseline when evaluating new approaches is Naïve Bayesian Classifiers (NBC). The present study aims at evaluating the classification power of several plant chloroplast genetic markers that have been proposed as barcodes (trnL, rpoB, rbcL, matK, psbA-trnH, and psbK) using an NBC. We performed the classification at different taxonomic levels, and identified problematic genera when resolution was desired. We propose matK and trnL as potential candidate markers with resolution up to genus level. Some problematic genera within certain families could lead to the misclassification no matter which marker is used (i.e., Aegilops, Gueldenstaedtia, Helianthus, Oryza, Shorea, Thysananthus, and Triticum). Finally, we suggest recommendations for the taxonomic identification of plants in samples with potential mixtures.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32760678

RESUMO

Malassezia yeasts are lipid dependent and part of the human and animal skin microbiome. However, they are also associated with a variety of dermatological conditions and even cause systemic infections. How these yeasts can live as commensals on the skin and switch to a pathogenic stage has long been a matter of debate. Lipids are important cellular molecules, and understanding the lipid metabolism and composition of Malassezia species is crucial to comprehending their biology and host-microbe interaction. Here, we investigated the lipid composition of Malassezia strains grown to the stationary phase in a complex Dixon medium broth. In this study, we perform a lipidomic analysis of a subset of species; in addition, we conducted a gene prediction analysis for the detection of lipid metabolic proteins. We identified 18 lipid classes and 428 lipidic compounds. The most commonly found lipids were triglycerides (TAG), sterol (CH), diglycerides (DG), fatty acids (FAs), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ceramides, cholesteryl ester (CE), sphingomyelin (SM), acylcarnitine, and lysophospholipids. Particularly, we found a low content of CEs in Malassezia furfur, atypical M. furfur, and Malassezia pachydermatis and undetectable traces of these components in Malassezia globosa, Malassezia restricta, and Malassezia sympodialis. Remarkably, uncommon lipids in yeast, like diacylglyceryltrimethylhomoserine and FA esters of hydroxyl FAs, were found in a variable concentration in these Malassezia species. The latter are bioactive lipids recently reported to have antidiabetic and anti-inflammatory properties. The results obtained can be used to discriminate different Malassezia species and offer a new overview of the lipid composition of these yeasts. We could confirm the presence and the absence of certain lipid-biosynthesis genes in specific species. Further analyses are necessary to continue disclosing the complex lipidome of Malassezia species and the impact of the lipid metabolism in connection with the host interaction.


Assuntos
Malassezia , Animais , Humanos , Lipidômica , Lipídeos , Malassezia/genética , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...