Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 143, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291027

RESUMO

Data on the movement and space use of aquatic animals are crucial to understand complex interactions among biotic and abiotic components of ecosystems and facilitate effective conservation and management. Acoustic telemetry (AT) is a leading method for studying the movement ecology of aquatic animals worldwide, yet the ability to efficiently access study information from AT research is currently lacking, limiting advancements in its application. Here, we describe TrackdAT, an open-source metadata dataset where AT research parameters are catalogued to provide scientists, managers, and other stakeholders with the ability to efficiently identify and evaluate existing peer-reviewed research. Extracted metadata encompasses key information about biological and technical aspects of research, providing a comprehensive summary of existing AT research. TrackdAT currently hosts information from 2,412 journal articles published from 1969 to 2022 spanning 614 species and 380,289 tagged animals. TrackdAT has the potential to enable regional and global mobilization of knowledge, increased opportunities for collaboration, greater stakeholder engagement, and optimization of future ecological research.


Assuntos
Ecossistema , Metadados , Telemetria , Animais , Acústica , Movimento , Telemetria/métodos
2.
Mov Ecol ; 11(1): 45, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501158

RESUMO

There has recently been great interest in the use of accelerometers onboard electronic transmitters to characterise various aspects of the ecology of wild animals. We review use cases and outline how these tools can provide opportunities for studying activity and survival, exercise physiology of wild animals, the response to stressors, energy landscapes and conservation planning tools, and the means with which to identify behaviours remotely from transmitted data. Accelerometer transmitters typically send data summaries to receivers at fixed intervals after filtering out static acceleration and calculating root-mean square error or overall dynamic body action of 2- or 3-axis acceleration values (often at 5-12.5 Hz) from dynamic acceleration onboard the tag. Despite the popularity of these transmitters among aquatic ecologists, we note that there is wide variation in the sampling frequencies and windows used among studies that will potentially affect the ability to make comparisons in the future. Accelerometer transmitters will likely become increasingly popular tools for studying finer scale details about cryptic species that are difficult to recapture and hence not suitable for studies using data loggers. We anticipate that there will continue to be opportunities to adopt methods used for analysing data from loggers to datasets generated from acceleration transmitters, to generate new knowledge about the ecology of aquatic animals.

3.
Am Nat ; 201(4): 586-602, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958006

RESUMO

AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.


Assuntos
Organismos Aquáticos , Peixes , Animais , Comportamento de Retorno ao Território Vital
4.
J Fish Biol ; 101(4): 756-779, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788929

RESUMO

Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.


Assuntos
Ecologia , Ecossistema , Animais , Humanos , Peixes/fisiologia , Cadeia Alimentar , Água Doce , Conservação dos Recursos Naturais
5.
Trends Ecol Evol ; 37(1): 79-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563403

RESUMO

Acoustic telemetry (AT) is a rapidly evolving technique used to track the movements of aquatic animals. As the capacity of AT research expands it is important to optimize its relevance to management while still pursuing key ecological questions. A global review of AT literature revealed region-specific research priorities underscoring the breadth of how AT is applied, but collectively demonstrated a lack of management-driven objectives, particularly relating to fisheries, climate change, and protection of species. In addition to the need for more research with direct pertinence to management, AT research should prioritize ongoing efforts to create collaborative opportunities, establish long-term and ecosystem-based monitoring, and utilize technological advancements to bolster aquatic policy and ecological understanding worldwide.


Assuntos
Ecossistema , Pesqueiros , Acústica , Animais , Conservação dos Recursos Naturais/métodos , Telemetria/métodos
6.
J Fish Biol ; 98(1): 237-250, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33015862

RESUMO

Understanding predator-prey interactions and food web dynamics is important for ecosystem-based management in aquatic environments, as they experience increasing rates of human-induced changes, such as the addition and removal of fishes. To quantify the post-stocking survival and predation of a prey fish in Lake Ontario, 48 bloater Coregonus hoyi were tagged with acoustic telemetry predation tags and were tracked on an array of 105 acoustic receivers from November 2018 to June 2019. Putative predators of tagged bloater were identified by comparing movement patterns of six species of salmonids (i.e., predators) in Lake Ontario with the post-predated movements of bloater (i.e., prey) using a random forests algorithm, a type of supervised machine learning. A total of 25 bloater (53% of all detected) were consumed by predators on average (± S.D.) 3.1 ± 2.1 days after release. Post-predation detections of predators occurred for an average (± S.D.) of 78.9 ± 76.9 days, providing sufficient detection data to classify movement patterns. Tagged lake trout Salvelinus namaycush provided the most reliable classification from behavioural predictor variables (89% success rate) and was identified as the main consumer of bloater (consumed 50%). Movement networks between predicted and tagged lake trout were significantly correlated over a 6 month period, supporting the classification of lake trout as a common bloater predator. This study demonstrated the ability of supervised learning techniques to provide greater insight into the fate of stocked fishes and predator-prey dynamics, and this technique is widely applicable to inform future stocking and other management efforts.


Assuntos
Acústica , Sistemas de Identificação Animal/instrumentação , Pesqueiros , Aprendizado de Máquina , Comportamento Predatório , Salmonidae/fisiologia , Telemetria/veterinária , Animais , Ecossistema , Cadeia Alimentar , Lagos , Ontário , Truta/fisiologia
7.
J Fish Biol ; 95(6): 1512-1516, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605542

RESUMO

Bloater Coregonus hoyi (n = 48) were implanted with V9DT-2x predation transmitters and monitored on 105 acoustic receivers in eastern Lake Ontario for >6 months. Twenty-three predation events were observed, with predator retention of tags ranging from ≤1 to ≥194 days and 30% of retentions lasting >150 days. Long tag retention times raise concerns for acoustic telemetry analysis and the health of piscivorous predators retaining tags.


Assuntos
Sistemas de Identificação Animal , Comportamento Predatório , Salmonidae , Telemetria , Acústica , Animais , Lagos , Ontário
8.
Ecol Evol ; 8(18): 9503-9515, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377518

RESUMO

Developing efficient, reliable, cost-effective ways to identify diet is required to understand trophic ecology in complex ecosystems and improve food web models. A combination of techniques, each varying in their ability to provide robust, spatially and temporally explicit information can be applied to clarify diet data for ecological research. This study applied an integrative analysis of a fishery-targeted species group-Plectropomus spp. in the central Great Barrier Reef, Australia, by comparing three diet-identification approaches. Visual stomach content analysis provided poor identification with ~14% of stomachs sampled resulting in identification to family or lower. A molecular approach was successful with prey from ~80% of stomachs identified to genus or species, often with several unique prey in a stomach. Stable isotope mixing models utilizing experimentally derived assimilation data, identified similar prey as the molecular technique but at broader temporal scales, particularly when prior diet information was incorporated. Overall, Caesionidae and Pomacentridae were the most abundant prey families (>50% prey contribution) for all Plectropomus spp., highlighting the importance of planktivorous prey. Less abundant prey categories differed among species/color phases indicating possible niche segregation. This study is one of the first to demonstrate the extent of taxonomic resolution provided by molecular techniques, and, like other studies, illustrates that temporal investigations of dietary patterns are more accessible in combination with stable isotopes. The consumption of mainly planktivorous prey within this species group has important implications within coral reef food webs and provides cautionary information regarding the effects that changing resources could have in reef ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...