Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 327: 1-9, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446332

RESUMO

Although interest in peri-implant mucositis and peri-implantitis has recently been increasing, the mechanisms driving these diseases remain unknown. Here, the effects of titanium ions on the inflammation and bone resorption around an implant were investigated. First, the accumulated amount of Ti ions released into gingival and bone tissues from an implant exposed to sodium fluoride solution was measured using inductively coupled plasma mass spectrometry. Next, the cellular responses in gingival and bone tissues to Ti ions and/or Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) were assessed using a rat model. More Ti ions were detected in the gingival tissues around an implant after treatment with sodium fluoride (pH 4.2) than in its absence, which suggests that the fluoride corroded the implant surface under salivary buffering capacity. The injection of Ti ions (9ppm) significantly increased the mRNA expression and protein accumulation of chemokine (C-C motif) ligand 2, as well as the ratio of receptor activator of nuclear factor-κB ligand to osteoprotegerin, in rat gingival tissues exposed to P. gingivalis-LPS in a synergistic manner. In addition, the enhanced localization of toll-like receptor 4, which is an LPS receptor, was observed in gingival epithelium loaded with Ti ions (9ppm). These data suggest that Ti ions may be partly responsible for the infiltration of monocytes and osteoclast differentiation by increasing the sensitivity of gingival epithelial cells to microorganisms in the oral cavity. Therefore, Ti ions may be involved in the deteriorating effects of peri-implant mucositis, which can develop into peri-implantitis accompanied by alveolar bone resorption.


Assuntos
Reabsorção Óssea , Citocinas/biossíntese , Mandíbula/patologia , Próteses e Implantes , Titânio/metabolismo , Células 3T3 , Animais , Sequência de Bases , Meios de Cultivo Condicionados , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Lipopolissacarídeos/farmacologia , Camundongos , Dados de Sequência Molecular , Porphyromonas gingivalis/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Dent Mater J ; 26(2): 260-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17621943

RESUMO

The corrosion behaviors of Ti and Ti-6Al-4V, Ti-6Al-7Nb, Ti-0.5Pt, Ti-6Al-4V-0.5Pt, and Ti-6Al-7Nb-0.5Pt alloys were examined using an electrochemical analyzer in artificial saliva containing 0.1 and 0.2% NaF at a pH of 4.0. The SEM observations revealed that the surfaces of the alloys containing 0.5 wt% Pt were not affected in fluoride-containing environments, whereas the surfaces of Ti, Ti-6A1-4V, and Ti-6Al-7Nb alloys were markedly rough. In artificial saliva containing 0.1% NaF at a pH of 4.0, the amounts of Ti dissolved from the Ti, Ti-6Al-4V, and Ti-6Al-7Nb alloys were about 50 times larger than those of the alloys containing 0.5 wt% Pt. The tensile strengths of the alloys containing 0.5 wt% Pt were equal to or higher than those of pure Ti or the alloys without Pt. The Ti-0.5Pt, Ti-6Al-4V-0.5Pt, and Ti-6Al-7Nb-0.5 alloys are expected to be useful in clinical dentistry as new Ti alloys with high corrosion resistance and mechanical strength.


Assuntos
Ligas Dentárias/química , Implantes Dentários , Titânio/química , Cariostáticos/química , Corrosão , Análise do Estresse Dentário , Teste de Materiais , Microscopia Eletrônica , Platina/química , Saliva Artificial , Fluoreto de Sódio/química , Solubilidade , Propriedades de Superfície , Resistência à Tração
3.
Dent Mater J ; 25(1): 104-12, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16706304

RESUMO

The corrosion behaviors of Ti, Ti-6Al-7Nb and Ti-6Al-4V alloys, and an experimentally produced Ti-0.5Pt alloy in 0.05% to 2.0% concentrations of Acidulated Phosphate Fluoride (APF) solutions (corresponding to 226 to 9,050 ppm fluoride at pH 3.5 or 3.6) were examined. While the corrosion of Ti, Ti-6Al-7Nb and Ti-6Al-4V alloys might occur easily even in a diluted 0.05% APF solution, dissolution of Ti from the Ti-0.5Pt alloy was observed only in test solutions with APF concentration exceeding 0.2%. When Ti-6Al-7Nb and Ti-6Al-4V alloys were immersed in 2.0% APF solution, their surfaces were entirely covered by compact corrosion products of Na3TiF6 due to severe corrosion. As a result, Ti dissolution was prevented and the amount of Ti dissolved decreased. However, since Ti was covered by porous, large-sized corrosion products of Na3TiF6 and that Ti-0.5Pt alloy was not covered with any corrosion product, the amount of Ti dissolved increased in the 2.0% APF solution.


Assuntos
Fluoreto de Fosfato Acidulado/efeitos adversos , Cariostáticos/efeitos adversos , Titânio/química , Ligas , Análise de Variância , Corrosão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...