Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 13: 322-329, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36247526

RESUMO

The hippocampus comprises several neuronal populations such as CA1, CA2, CA3, and the dentate gyrus (DG), which present different neuronal origins, morphologies, and molecular mechanisms. Laser capture microdissection (LCM) allows selectively collecting samples from target regions and eliminating unwanted cells to obtain more specific results. LCM of hippocampus neuronal populations coupled with RNA-seq analysis has the potential to allow the exploration of the molecular machinery unique to each of these subfields. Previous RNA-seq investigation has already provided a molecular blueprint of the hippocampus, however, there is no RNA-seq data specific for each of the rat hippocampal regions. Serial tissue sections covering the hippocampus were produced from frozen brains of adult male Wistar rats, and the hippocampal subfields CA1, CA2, CA3, and DG were identified and isolated by LCM. We found evident segregation of the transcriptomic profile from different regions of the hippocampus and the expression of known, as well as novel, specific marker genes for each region. Gene ontology enrichment analysis of CA1 subfield indicates an enrichment of actin regulation and postsynaptic membrane AMPA receptors genes indispensable for long-term potentiation. CA2 and CA3 transcripts were found associated with the increased metabolic processes. DG expression was enriched for ribosome and spliceosome, both required for protein synthesis and maintenance of cell life. The present findings contribute to a deeper understanding of the differences in the molecular machinery expressed by the rat hippocampal neuronal populations, further exploring underlying mechanisms responsible for each subflied specific functions.

2.
Ann Clin Transl Neurol ; 9(4): 454-467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238489

RESUMO

OBJECTIVES: We compared the proteomic signatures of the hippocampal lesion induced in three different animal models of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS): the systemic pilocarpine model (PILO), the intracerebroventricular kainic acid model (KA), and the perforant pathway stimulation model (PPS). METHODS: We used shotgun proteomics to analyze the proteomes and find enriched biological pathways of the dorsal and ventral dentate gyrus (DG) isolated from the hippocampi of the three animal models. We also compared the proteomes obtained in the animal models to that from the DG of patients with pharmacoresistant MTLE+HS. RESULTS: We found that each animal model presents specific profiles of proteomic changes. The PILO model showed responses predominantly related to neuronal excitatory imbalance. The KA model revealed alterations mainly in synaptic activity. The PPS model displayed abnormalities in metabolism and oxidative stress. We also identified common biological pathways enriched in all three models, such as inflammation and immune response, which were also observed in tissue from patients. However, none of the models could recapitulate the profile of molecular changes observed in tissue from patients. SIGNIFICANCE: Our results indicate that each model has its own set of biological responses leading to epilepsy. Thus, it seems that only using a combination of the three models may one replicate more closely the mechanisms underlying MTLE+HS as seen in patients.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Benchmarking , Modelos Animais de Doenças , Epilepsia/patologia , Epilepsia do Lobo Temporal/patologia , Humanos , Proteoma , Proteômica , Esclerose
3.
Hippocampus ; 31(2): 122-139, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33037862

RESUMO

Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder characterized by the occurrence of seizures, and histopathological abnormalities in the mesial temporal lobe structures, mainly hippocampal sclerosis (HS). We used a multi-omics approach to determine the profile of transcript and protein expression in the dorsal and ventral hippocampal dentate gyrus (DG) and Cornu Ammonis 3 (CA3) in an animal model of MTLE induced by pilocarpine. We performed label-free proteomics and RNAseq from laser-microdissected tissue isolated from pilocarpine-induced Wistar rats. We divided the DG and CA3 into dorsal and ventral areas and analyzed them separately. We performed a data integration analysis and evaluated enriched signaling pathways, as well as the integrated networks generated based on the gene ontology processes. Our results indicate differences in the transcriptomic and proteomic profiles among the DG and the CA3 subfields of the hippocampus. Moreover, our data suggest that epileptogenesis is enhanced in the CA3 region when compared to the DG, with most abnormalities in transcript and protein levels occurring in the CA3. Furthermore, our results show that the epileptogenesis in the pilocarpine model involves predominantly abnormal regulation of excitatory neuronal mechanisms mediated by N-methyl D-aspartate (NMDA) receptors, changes in the serotonin signaling, and neuronal activity controlled by calcium/calmodulin-dependent protein kinase (CaMK) regulation and leucine-rich repeat kinase 2 (LRRK2)/WNT signaling pathways.


Assuntos
Epilepsia do Lobo Temporal , Animais , Epilepsia do Lobo Temporal/patologia , Hipocampo/metabolismo , Pilocarpina/toxicidade , Proteômica , Ratos , Ratos Wistar
4.
Diabetes ; 63(10): 3334-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24812431

RESUMO

IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.


Assuntos
Hipotálamo/metabolismo , Quinase I-kappa B/metabolismo , Resistência à Insulina/fisiologia , Neurônios/metabolismo , Obesidade/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica , Quinase I-kappa B/antagonistas & inibidores , Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Fosforilação , Transdução de Sinais/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...