Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 31(11): 3136-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24842662

RESUMO

PURPOSE: To prepare and thoroughly characterize a new polymorph of the broad-spectrum antibiotic minocycline from its hydrochloride dehydrate salts. METHODS: The new minocycline hydrochloride polymorph was prepared by means of the antisolvent effect caused by carbon dioxide. Minocycline recrystallized as a red crystalline hydrochloride salt, starting from solutions or suspensions containing CO2 and ethanol under defined conditions of temperature, pressure and composition. RESULTS: This novel polymorph (ß-minocycline) revealed characteristic PXRD and FTIR patterns and a high melting point (of 247 ºC) compared to the initial minocycline hydrochloride hydrates (α-minocycline). Upon dissolution the new polymorph showed full anti-microbial activity. Solid-state NMR and DSC studies evidenced the higher chemical stability and crystalline homogeneity of ß-minocycline compared to the commercial chlorohydrate powders. Molecular structures of both minocyclines present relevant differences as shown by multinuclear solid-state NMR. CONCLUSIONS: This work describes a new crystalline structure of minocycline and evidences the ability of ethanol-CO2 system in removing water molecules from the crystalline structure of this API, at modest pressure, temperature and relatively short time (2 h), while controlling the crystal habit. This process has therefore the potential to become a consistent alternative towards the control of the solid form of APIs.


Assuntos
Dióxido de Carbono/química , Minociclina/química , Polímeros/química , Anti-Infecciosos/química , Cristalização/métodos , Etanol/química , Pós/química , Solubilidade , Soluções/química , Suspensões/química , Temperatura , Água/química
2.
Biotechnol Prog ; 29(5): 1212-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23804427

RESUMO

Freezing is an important operation in biotherapeutics industry. However, water crystallization in solution, containing electrolytes, sugars and proteins, is difficult to control and usually leads to substantial spatial solute heterogeneity. Herein, we address the influence of the geometry of freezing direction (axial or radial) on the heterogeneity of the frozen matrix, in terms of local concentration of solutes and thermal history. Solutions of hemoglobin were frozen radially and axially using small-scale and pilot-scale freezing systems. Concentration of hemoglobin, sucrose and pH values were measured by ice-core sampling and temperature profiles were measured at several locations. The results showed that natural convection is the major source for the cryoconcentration heterogeneity of solutes over the geometry of the container. A significant improvement in this spatial heterogeneity was observed when the freezing geometry was nonconvective, i.e., the freezing front progression was unidirectional from bottom to top. Using this geometry, less than 10% variation in solutes concentration was obtained throughout the frozen solutions. This result was reproducible, even when the volume was increased by two orders of magnitude (from 30 mL to 3 L). The temperature profiles obtained for the nonconvective freezing geometry were predicted using a relatively simple computational fluid dynamics model. The reproducible solutes distribution, predictable temperature profiles, and scalability demonstrate that the bottom to top freezing geometry enables an extended control over the freezing process. This geometry has therefore shown the potential to contribute to a better understanding and control of the risks inherent to frozen storage.


Assuntos
Congelamento , Temperatura Alta , Proteínas/química , Cristalização , Modelos Teóricos , Soluções/química , Água/química
3.
Eur J Pharm Biopharm ; 82(2): 392-400, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22841882

RESUMO

Strangles is an extremely contagious and sometimes deadly disease of the Equidae. The development of an effective vaccine should constitute an important asset to eradicate this worldwide infectious disease. In this work, we address the development of a mucosal vaccine by using a Supercritical Enhanced Atomization (SEA) spray-drying technique. Aqueous solutions containing the Streptococcus equi extracts and chitosan were converted into nanospheres with no use of organic solvents. The immune response in a mouse model showed that the nanospheres induced a well-balanced Th1 and Th2 response characterized by a unitary ratio between the concentrations of IgG2a and IgG1, together with IgA production. This strategy revealed to be an effective alternative for immunization against S. equi, and therefore, it may constitute a feasible option for production of a strangles vaccine.


Assuntos
Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/imunologia , Streptococcus equi/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Quitosana/química , Equidae/imunologia , Feminino , Doenças dos Cavalos/prevenção & controle , Cavalos/imunologia , Imunoglobulina G/imunologia , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Nanosferas/química , Soluções/química , Vacinas Estreptocócicas/química , Células Th1/imunologia , Células Th2/imunologia , Vacinação/métodos , Água/química
4.
Eur J Pharm Sci ; 38(1): 9-17, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19477273

RESUMO

The main objective of the present work is to check the feasibility of supercritical fluid (SCF) technologies in the screening and design of cocrystals (novel crystalline solids). The cocrystal formation tendencies in three different SCF techniques, focusing on distinct supercritical fluid properties - solvent, anti-solvent and atomization enhancer - were investigated. The effect of processing parameters on the cocrystal formation behaviour and particle properties in these techniques was also studied. A recently reported indomethacin-saccharin (IND-SAC) cocrystalline system was our model system. A 1:1 molar ratio of indomethacin (gamma-form) and saccharin was used as a starting material. The SCF techniques employed in the study include the CSS technique (cocrystallization with supercritical solvent), the SAS technique (supercritical anti-solvent), and the AAS technique (atomization and anti-solvent). The resulting cocrystalline phase was identified using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-Raman (FT-Raman). The particle morphologies and size distributions were determined using scanning electron microscopy (SEM) and aerosizer, respectively. The pure IND-SAC cocrystals were obtained from SAS and AAS processes, whilst partial to no cocrystal formation occurred in the CSS process. However, no remarkable differences were observed in terms of cocrystal formation at different processing conditions in SAS and AAS processes. Particles from CSS processes were agglomerated and large, whilst needle-to-block-shaped and spherical particles were obtained from SAS and AAS processes, respectively. The particle size distribution of these particles was 0.2-5microm. Particulate IND-SAC cocrystals with different morphologies and sizes (nano-to-micron) were produced using supercritical fluid techniques. This work demonstrates the potential of SCF technologies as screening methods for cocrystals with possibilities for particle engineering.


Assuntos
Cristalização/métodos , Indometacina/química , Sacarina/química , Tecnologia Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Dióxido de Carbono/química , Análise de Fourier , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pressão , Solventes/química , Análise Espectral Raman , Propriedades de Superfície , Tecnologia Farmacêutica/instrumentação , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...