Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Behav Brain Res ; 460: 114817, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38122904

RESUMO

Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Desnutrição , Gravidez , Feminino , Ratos , Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tropomiosina/metabolismo , Meio Ambiente , Ansiedade , Vitaminas , Desnutrição/complicações , Desnutrição/metabolismo , Hipocampo/metabolismo , Redução de Peso , Receptor trkB/metabolismo
2.
Psychol Health Med ; : 1-13, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576314

RESUMO

The aim was to evaluate the sleep-wake cycle pattern, mood, perceived stress and some behaviors, such as physical exercise and exposure to natural light of college students during the COVID-19 pandemic. This is a cross-sectional study conducted between June and August 2020 using an electronic form provided by Google. The sample consisted of undergraduate students aged between 18 and 30 years old and residents of the northeast region of Brazil. The students generally had sleepiness and poor sleep quality, high levels of anxiety, mild to moderate depressive symptoms and moderate perceived stress. Some of these aspects were worse in women. The college students showed three sleep patterns: one group had good sleep quality without excessive daytime sleepiness; another group had poor sleep quality, but no excessive daytime sleepiness; and a third group had high daytime sleepiness, and less expressive sleep quality impairment. Greater exposure to sunlight and practicing physical exercise predominated in individuals with better sleep quality, suggesting that they are protective factors. In addition, excessive daytime sleepiness and poor sleep quality were separately associated with higher anxiety, depression and stress perception levels, proving to be important aspects for care in order to favor mental health during the pandemic. In conclusion, it is suggested that the COVID-19 pandemic affected the sleep of college students in a heterogeneous way. The differentiated sleep patterns are associated with exposure to natural light and exercising.

3.
Life Sci ; 309: 120947, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096244

RESUMO

Eating behavior is regulated by central and peripheral signals, which interact to modulate the response to nutrient intake. Central control is mediated by the hypothalamus through neuropeptides that activate the orexigenic and anorexigenic pathways. Energy homeostasis depends on the efficiency of these regulatory mechanisms. This neuroendocrine regulation of hunger and appetite can be modulated by nutritional sensors such as adenosine monophosphate-activated protein kinase (AMPK). Thus, this systematic review discusses the literature on correlations between AMPK and hypothalamic neuropeptides regarding control of eating behavior. Lilacs, PubMed/Medline, ScienceDirect, and Web of Science were searched for articles published from 2009 to 2021 containing combinations of the following descriptors: "eating behavior," "hypothalamus," "neuropeptide," and "AMPK." Of the 1330 articles found initially, 27 were selected after application of the inclusion and exclusion criteria. Of the selected articles, 15 reported decreased AMPK activity, due to interventions using angiotensin II infusion, fructose, glucose, cholecystokinin, leptin, or lipopolysaccharide (LPS) injection; dietary control through a low-protein diet or a high-fat diet (60 % fat); induction of hyperthyroidism; or injection of AMPK inhibitors. Seven studies showed a decrease in neuropeptide Y (NPY) through CV4 AICAR administration; fructose, glucose, leptin, or angiotensin II injections; or infusion of LPS from Escherichia coli and liver kinase B1 (LKB1) overexpression. Eleven studies reported a decrease in food consumption due to a decrease in AMPK activity and/or hypothalamic neuropeptides such as NPY. The results indicate that there is a relationship between AMPK and the control of eating behavior: a decrease in AMPK activity due to a dietary or non-dietary stimulus is associated with a consequent decrease in food intake. Furthermore, AMPK activity can be modulated by glucose, thyroid hormones, estradiol, leptin, and ghrelin.


Assuntos
Leptina , Neuropeptídeos , Leptina/metabolismo , Grelina/metabolismo , Neuropeptídeo Y/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipopolissacarídeos/metabolismo , Angiotensina II/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Comportamento Alimentar , Ingestão de Alimentos , Colecistocinina/metabolismo , Glucose/metabolismo , Hormônios Tireóideos/metabolismo , Estradiol/metabolismo , Monofosfato de Adenosina/metabolismo , Frutose
4.
J Affect Disord Rep ; 10: 100377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35814812

RESUMO

Background: College students experience high stress levels during emergency remote classes in the COVID-19 pandemic. However, it is not clear whether this is due to the summation effect of both stressors (classes and pandemic). Therefore, the aim of this study was to investigate predictors of stress in college students before and during remote classes five months after the beginning of the COVID-19 pandemic. Methods: The study was conducted before (BRC, July-August 2020) and during remote classes (DRC, October-November 2020). The sample consisted of 177 individuals (80 in BRC, 97 in DRC). Students were asked to self-collect saliva for cortisol analysis at each moment of the study, and to fill out a form to characterize the individual and assess the chronotype (Morningness-Eveningness Questionnaire), sleep quality (Pittsburgh Sleep Quality Index) and the stress (Perceived Stress Scale-10). Results: There was no difference between the evaluated periods for cortisol, perceived stress or sleep quality. Predictors for cortisol levels were gender, academic semester, chronotype, sleep quality and sadness due to pandemic (p<0.001). Limitations: Short interval between BRC and DRC assessments of perceived stress and salivary cortisol. Conclusions: Age, sex, income, academic semester, chronotype, and the impact of the pandemic on mood are predictors of stress among college students. In addition, emergency remote classes and sleep quality contribute to less stress.

5.
J Endocrinol ; 253(3): 85-96, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35302951

RESUMO

Obesogenic diets are known to induce obesity and changes in food intake in experimental animals. Obesity negatively affects the peripheral metabolism and neural aspects, such as changes in eating behavior. In obese animals, dopamine (DA) receptor levels are reduced. DA is one of the main peptides involved in the motivation and pleasure of eating. A combination of naltrexone/bupropion (NB) has shown promise in controlling metabolic alterations, but there are few studies on how they modulate dopaminergic expression. NB, in addition to reducing food intake and body weight, can modify tyrosine hydroxylase (Th) and DA receptor D2 (Drd2) levels in the mesolimbic areas of rats submitted to a high-fat diet (HF). The study evaluated the effect of NB on food intake, body weight, and expression levels of Th, Drd1a, and Drd2, in the nucleus accumbens and striatum of rats fed on HF diet. Wistar rats were grouped according to diet: standard (n = 20) and HF diet (n = 20). The food intake and body weight were analyzed. The gene expression of Th, Drd1a, and Drd2 was evaluated using real-time PCR. NB combination of 1 mg/kg and 20 mg/kg reduced food intake and body weight, increased Drd2 expression in rats on HF diet, and increased Th in rats on both experimental diets. The level of Drd1a was unchanged. We concluded that bodyweight reduction may be associated with decreased food intake in response to the increased Drd2 expression in the mesolimbic areas of rats that received an HF diet.


Assuntos
Bupropiona , Naltrexona , Animais , Peso Corporal , Bupropiona/farmacologia , Dieta Hiperlipídica , Ingestão de Alimentos , Expressão Gênica , Naltrexona/farmacologia , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D2/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Nutr Neurosci ; 25(3): 502-510, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32496945

RESUMO

Aim: To analyze the effects of exposure to a high-fat diet during the perinatal period and after weaning on white adipose tissue accumulation and gene expression of TNF- α and NF- κB.Method: Wistar female rats were fed with high-fat (H) or control (C) diet during pregnancy and lactation. The offspring were allocated into four groups: Control Control (CC), offspring of mothers GC, fed a control diet after weaning; Control High-fat (CH), offspring of mothers GC, fed a hight-fat diet after weaning; High-fat Control (HC), offspring of mothers GH, fed with control diet after weaning; and High-fat High-fat (HH), offspring of mothers GH, fed a H diet after weaning.Results: HH and HC groups showed increased body weight compared to CC group and increases in caloric intake, larger amount of white adipose tissue and adipocyte size compared to CC and CH groups. The HH and CH groups showed higher NF-kB expression in white adipose tissue compared to the CC and HC groups, and the HH group also showed higher TNF- α expression. In the hypothalamus, the HH and HC groups exhibited higher TNF- α expression compared to the CC and CH groups.Conclusion: Perinatal and post-weaning exposure to the high-fat diet increases the amount of white adipose tissue, adipocyte size, and expression of the inflammatory genes TNF-α and NF-kB.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Feminino , Hipotálamo/metabolismo , Lactação , NF-kappa B/genética , NF-kappa B/metabolismo , Gravidez , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Desmame
7.
Arq Neuropsiquiatr ; 78(6): 370-379, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32609194

RESUMO

BACKGROUND: Individuals with migraine usually complain about lower memory performance. Diagnostic methods such as neuroimaging may help in the understanding of possible morphologic and functional changes related to the memory of those individuals. Therefore, the aim of this review is to analyze the available literature on neuroimaging changes related to memory processing in migraine. METHODS: We searched the following databases: Pubmed/Medline, Psycinfo, Science Direct, Cochrane and Web of Science. We used articles without restriction of year of publication. The combination of descriptors used for this systematic review of literature were Neuroimaging OR Imaging OR Brain AND Migraine OR Chronic Migraine AND Memory. RESULTS: Of the 306 articles found, nine were selected and all used magnetic resonance imaging (MRI). The studies used structural and functional MRI techniques with a predominance of 3 Tesla equipment and T1-weighted images. According to the results obtained reported by these studies, migraine would alter the activity of memory-related structures, such as the hippocampus, insula and frontal, parietal and temporal cortices, thereby suggesting a possible mechanism by which migraine would influence memory, especially in relation to the memory of pain. CONCLUSIONS: Migraine is associated to global dysfunction of multisensory integration and memory processing. This condition changes the activity of structures in various regions related to memory of pain, prospective memory, as well as in short- and long-term verbal and visuospatial memories. However, it is necessary to perform studies with larger samples in association with cognitive tests, and without the interference of medications to verify possible alterations and to draw more concrete conclusions.


Assuntos
Transtornos de Enxaqueca , Neuroimagem , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Memória , Transtornos de Enxaqueca/diagnóstico por imagem
8.
Arq. neuropsiquiatr ; 78(6): 370-379, June 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1131710

RESUMO

ABSTRACT Background: Individuals with migraine usually complain about lower memory performance. Diagnostic methods such as neuroimaging may help in the understanding of possible morphologic and functional changes related to the memory of those individuals. Therefore, the aim of this review is to analyze the available literature on neuroimaging changes related to memory processing in migraine. Methods: We searched the following databases: Pubmed/Medline, Psycinfo, Science Direct, Cochrane and Web of Science. We used articles without restriction of year of publication. The combination of descriptors used for this systematic review of literature were Neuroimaging OR Imaging OR Brain AND Migraine OR Chronic Migraine AND Memory. Results: Of the 306 articles found, nine were selected and all used magnetic resonance imaging (MRI). The studies used structural and functional MRI techniques with a predominance of 3 Tesla equipment and T1-weighted images. According to the results obtained reported by these studies, migraine would alter the activity of memory-related structures, such as the hippocampus, insula and frontal, parietal and temporal cortices, thereby suggesting a possible mechanism by which migraine would influence memory, especially in relation to the memory of pain. Conclusions: Migraine is associated to global dysfunction of multisensory integration and memory processing. This condition changes the activity of structures in various regions related to memory of pain, prospective memory, as well as in short- and long-term verbal and visuospatial memories. However, it is necessary to perform studies with larger samples in association with cognitive tests, and without the interference of medications to verify possible alterations and to draw more concrete conclusions.


RESUMO Introdução: Indivíduos com enxaqueca geralmente se queixam de menor desempenho de memória. Métodos de diagnóstico como a neuroimagem podem auxiliar no entendimento de possíveis alterações morfológicas e funcionais relacionadas à memória desses indivíduos. Portanto, o objetivo desta revisão é analisar a literatura disponível sobre alterações de neuroimagem relacionadas a alterações de memória na enxaqueca. Métodos: Pesquisou-se nas seguintes bases de dados: PubMed/MEDLINE, Psycinfo, Science Direct, Cochrane e Web of Science. Foram utilizados artigos sem restrição de ano de publicação. A combinação dos descritores utilizados para esta revisão sistemática da literatura foram Neuroimaging OR Imaging OR Brain AND Migraine OR Chronic Migraine AND Memory. Resultados: Dos 306 artigos encontrados, nove foram selecionados e todos utilizaram ressonância magnética (RM). Os estudos utilizaram as técnicas de RM estrutural e funcional com predomínio de equipamentos de 3 Tesla e imagens ponderadas em T1. De acordo com os resultados obtidos nos estudos, a enxaqueca alteraria a atividade de estruturas relacionadas à memória, como o hipocampo, a ínsula e os córtices frontal, parietal e temporal, sugerindo um possível mecanismo pelo qual a enxaqueca influenciaria a memória, especialmente em relação à memória da dor. Conclusões: A enxaqueca está associada à disfunção global da integração multissensorial e processamento de memória. Essa condição altera a atividade de estruturas em várias regiões relacionadas à memória da dor, à memória prospectiva, bem como às memórias verbais e visuais-espaciais de curto e longo prazo. No entanto, é necessário realizar estudos com amostras maiores em associação com testes cognitivos, e sem a interferência de medicamentos para verificar possíveis alterações e tecer conclusões mais concretas.


Assuntos
Humanos , Neuroimagem , Transtornos de Enxaqueca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Memória
9.
Pharmacol Biochem Behav ; 192: 172908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199909

RESUMO

Stressful events occurring during early life have been related to behavioral and neurochemical disturbances. Maternal separation during the first two weeks of life is a traumatic event that strongly affects the feeding behavior and serotonergic system of the progeny in adulthood. As this system modulates the feeding behavior, the present study aimed at investigating the effects of maternal separation-induced stress on both the feeding behavior and serotonergic system of the middle-aged female rats by manipulating this system using fluoxetine, a selective serotonin transporter inhibitor. Lactating Wistar rats were separated from their litters from postnatal day 2 (PND 2) to PND 14 for 3 h in the dark phase of the circadian cycle. The maternally separated (MS) and control (C) groups were distinguished from each other based on the incidence or absence of maternal separation (early life stress). All the analyses were done on the female offspring from one-year of age. Maternal separation anticipated the satiety point in these females. This anticipation was linked to lower food intake, meal duration and meal size. These results mirrored the effects of fluoxetine in the control animals. Furthermore, maternal separation was associated with 5ht1b serotonin receptor hyperexpression in the hypothalamus. These findings demonstrate that maternal separation has long-lasting effects on the eating behavior and serotonergic system and that this system could be responsible for mediating these behavioral outcomes.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Privação Materna , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT2C de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estresse Psicológico , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Expressão Gênica , Hipotálamo/metabolismo , Lactação , Masculino , RNA/genética , Ratos , Ratos Wistar , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
10.
Behav Brain Res ; 357-358: 65-70, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-28756214

RESUMO

The neurotransmitter serotonin (5-HT) acts as an important regulator of the critical neurodevelopmental processes and thus alterations in 5-HT signaling early promotes permanent structural and functional changes in brain. The selective serotonin reuptake inhibitors (SSRIs), as fluoxetine and citalopram, blocking serotonin transporter (SERT) at the presynaptic neuron, which regulates extracellular 5-HT levels. Evidence suggests that the exposure to SSRIs in the neurodevelopmental period may alters 5-HT signaling sensitivity on food intake control. The aim of the present study was to evaluate the effects of neonatal exposure to fluoxetine on molecular and cellular components of the serotonergic system and food intake control in young animals. Methods: The animals were divided according to experimental manipulation, Fluoxetine Group (FG): male pups received application of fluoxetine (10 mg/kg, 10 µL/g) and Saline Group (SG): male pups received saline application (0.9% NaCl, 10 µL/g), both throughout lactation (PND1-PND21). They evaluated body weight, food intake, SERT gene and protein expression, serotonin content in the hypothalamus. The neonatal exposure to fluoxetine promoted reduction in body weight, disturb the serotonin hypophagic response, and increase the serotonin and SERT hypothalamic in young animals. We conclude that the changes of components of the serotonergic system by neonatal exposure to fluoxetine may be responsible for disturb the inhibitory action of serotonin on food intake.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Fluoxetina/farmacologia , Inibição Neural/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Citalopram/farmacologia , Feminino , Privação de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
11.
Nutrients ; 10(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037019

RESUMO

Fatty acid (FA) composition is a determinant of the physiological effects of dietary oils. This study investigated the effects of vegetable oil supplementation with different FA compositions on anthropometric and biochemical parameters in obese women on a hypocaloric diet with lifestyle modifications. Seventy-five women (body mass index, BMI, 30⁻39.9kg/m²) were randomized based on 8-week oil supplementation into four experimental groups: the coconut oil group (CoG, n = 18), the safflower oil group (SafG, n = 19), the chia oil group (ChG, n = 19), and the soybean oil placebo group (PG, n = 19). Pre- and post-supplementation weight, anthropometric parameters, and body fat (%BF), and lean mass percentages (%LM) were evaluated, along with biochemical parameters related to lipid and glycidemic profiles. In the anthropometric evaluation, the CoG showed greater weight loss (Δ% = -8.54 ± 2.38), and reduced BMI (absolute variation, Δabs = -2.86 ± 0.79), waist circumference (Δabs = -6.61 ± 0.85), waist-to-height ratio (Δabs = -0.041 ± 0.006), conicity index (Δabs = -0.03 ± 0.016), and %BF (Δabs = -2.78 ± 0.46), but increased %LM (Δabs = 2.61 ± 1.40) (p < 0.001). Moreover, the CoG showed a higher reduction in biochemical parameters of glycemia (Δabs = -24.71 ± 8.13) and glycated hemoglobin (Δabs = -0.86 ± 0.28) (p < 0.001). The ChG showed a higher reduction in cholesterol (Δabs = -45.36 ± 0.94), low-density lipoprotein cholesterol (LDLc; Δabs = -42.53 ± 22.65), and triglycerides (Δabs = -49.74 ± 26.3), but an increase in high-density lipoprotein cholesterol (HDLc; abs = 3.73 ± 1.24, p = 0.007). Coconut oil had a more pronounced effect on abdominal adiposity and glycidic profile, whereas chia oil had a higher effect on improving the lipid profile. Indeed, supplementation with different fatty acid compositions resulted in specific responses.


Assuntos
Colesterol/sangue , Cocos/química , Dieta Redutora , Ácidos Graxos/farmacologia , Obesidade/sangue , Óleos de Plantas/farmacologia , Salvia/química , Tecido Adiposo/metabolismo , Adulto , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Índice de Massa Corporal , Carthamus tinctorius/química , Óleo de Coco/metabolismo , Óleo de Coco/uso terapêutico , Gorduras Insaturadas na Dieta/sangue , Suplementos Nutricionais , Ácidos Graxos/sangue , Ácidos Graxos/uso terapêutico , Feminino , Humanos , Obesidade/dietoterapia , Obesidade Abdominal/sangue , Obesidade Abdominal/dietoterapia , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Óleos de Plantas/uso terapêutico , Glycine max/química , Circunferência da Cintura , Redução de Peso/efeitos dos fármacos
12.
J Nutr Biochem ; 55: 229-242, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573696

RESUMO

Omega-3 (n-3) fatty acids modulate epigenetic changes critical to genesis and differentiation of neural cells. Conversely, maternal protein-malnutrition can negatively modify these changes. This study investigated whether a low n-6/n-3 ratio in a maternal diet could favor histone-3 (H3) modifications, gene transcription and differentiation in the offspring neural cells even under protein-deficiency. Female rats fed a control (Ct), or 3 types of multideficient diets differing in protein levels or linoleic/alpha-linolenic fatty acid ratios (RBD, RBD-C, RBD-SO) from 30 days prior to mating and during pregnancy. Cerebral cortex tissue and cortical cultures of progeny embryonic neurons and postnatal astrocytes were analyzed. H3K9 acetylation and H3K27 or H3K4 di-methylation levels were assessed by flow cytometry and/or immunocytochemistry. In astrocyte cultures and cortical tissue, the GFAP protein levels were assessed. Glial derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) gene expression were evaluated in the cortical tissue. GFAP levels were similar in astrocytes of Ct, RBD and RBD-C, but 65% lower in RBD-SO group. Higher levels of H3K9Ac were found in the neurons and H3K4Me2 in the astrocytes of the RBD group. No intergroup difference in the cortical GDNF mRNA expression or the H3K27Me2 levels in astrocytes was detected. LIF mRNA levels were higher in the RDB (P=.002) or RBD-C (P=.004) groups than in the control. The findings indicate the importance of dietary n-3 availability for the brain, even under a protein-deficient condition, inducing Histone modifications and increasing LIF gene transcription, involved in neural cell differentiation and reactivity.


Assuntos
Astrócitos/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Histonas/metabolismo , Fator Inibidor de Leucemia/genética , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Proteínas Alimentares/administração & dosagem , Epigênese Genética , Ácidos Graxos/análise , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteína Glial Fibrilar Ácida/metabolismo , Histonas/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Ratos
13.
Appetite ; 123: 114-119, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229410

RESUMO

Maternal separation stress (MS) is a model of early life stress performed by the separation between dam and pups in the first days of life. This model has been associated with eating behavior and dopaminergic system abnormal phenotypes. This study aims to investigate whether maternal separation in the light or dark phase of the circadian cycle promotes phenotypic adjustments in the eating behavior and the dopamine system in both males and females. Lactating Wistar rats were separated from their litters from postnatal day 1 (PND 1) to PND 14 for 6 h in the light or dark phase of the circadian cycle. The groups of female control (FC), male control (MC), female rat separated in the dark (FSD), male rat separated in the dark (MSD), female rat separated in the light (FSL), and male rat separated in the light (MSL) were composed. The assessment of food intake was performed at the age of 120-150 days and the analysis of brainstem drd1a and drd2a dopamine receptors expression at 180 days of life. Maternal separation promoted higher palatable diet intake independent on sex and circadian cycle. On the other hand, drd1a and drd2a dopamine receptors expression were higher only in males separated in the dark phase of the circadian cycle. These findings demonstrate that maternal separation effects on feeding behavior do not depend on sex and circadian cycle, but the effects on dopamine receptors expression depend on sex and circadian cycle.


Assuntos
Tronco Encefálico/metabolismo , Ingestão de Alimentos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Desmame , Animais , Animais Recém-Nascidos , Comportamento Animal , Relógios Circadianos/fisiologia , Dieta , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Masculino , Ratos , Ratos Wistar , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Fatores Sexuais , Estresse Psicológico/metabolismo
14.
Appl Physiol Nutr Metab ; 42(9): 931-940, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28511018

RESUMO

The goal of this study was to evaluate the effect of the food availability period on body weight, self-selection of macronutrients, adiposity, lipoprotein, and serum glucose profiles without changing energy intake. Young male rats were divided into 2 groups according to the availability of food during the light and dark phases of the cycle, forming 2 groups: control group (CG) and group with inverted feeding pattern (IFPG). Before inversion of food availability on the 80th day, circadian food intake was measured every 4 h over 24 h during 3 days. The glycemic curve, an oral test for glucose tolerance, and self-selection of macronutrients were evaluated. Blood samples were collected for analysis of fasting glucose, triglycerides, and total cholesterol fractions. The IFPG showed an increase in fasting glucose in the dark phase of the cycle, changes in the glycemic curve, and oral glucose tolerance test. It also showed increased abdominal and liver fat and distinct choice of macronutrients compared with the CG. A change in the availability of food according to the phase of the circadian cycle produces changes in glucose and feeding circadian rhythm culminating in increased abdominal and hepatic fat. These effects can increase the risk of metabolic disorders and installation of chronic diseases.


Assuntos
Gordura Abdominal/metabolismo , Adiposidade , Ritmo Circadiano , Ingestão de Energia , Comportamento Alimentar , Metabolismo dos Lipídeos , Fígado/metabolismo , Gordura Abdominal/crescimento & desenvolvimento , Gordura Abdominal/patologia , Animais , Comportamento Animal , Glicemia/análise , Restrição Calórica , Dieta/efeitos adversos , Teste de Tolerância a Glucose , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Hiperlipidemias/prevenção & controle , Lipídeos/sangue , Fígado/crescimento & desenvolvimento , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Tamanho do Órgão , Sobrepeso/etiologia , Sobrepeso/metabolismo , Sobrepeso/patologia , Sobrepeso/prevenção & controle , Ratos Wistar , Aumento de Peso
15.
Int J Dev Neurosci ; 46: 76-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26287581

RESUMO

BACKGROUND: Serotonin (5-HT) is involved in nervous system ontogenesis, and is important for neurotransmission and behavior modulation after the developmental stage. Alterations in 5-HT levels during the early period of life may signal to feeding behavior and hypothalamic genic expression changes in adulthood. OBJECTIVES: Investigate the effects of hypercaloric diet in adult rats submitted to neonatal serotonin reuptake inhibition on food intake, fat pad mass, plasmatic triglycerides/cholesterol and gene expression of hypothalamic peptides (POMC, NPY) and serotonin receptors (5-HT1B, 5-HT2C). METHODS: In each litter, 8 pups were divided into two groups: control (C) and fluoxetine (F). From the 1(st) to the 21(st) postnatal day, C pups received sterile saline while F pups received fluoxetine (10mg/kg). From 180 to 215 days, a group of rats from C and F groups were fed hypercaloric diet (CH and FH, 421.4Kcal/100 g) while the rest of animals from C and F groups fed chow diet (CC and FC). RESULTS: The use of hypercaloric diet was associated with lower accumulation of white adipose tissue in adult rats subjected to neonatal serotonin reuptake inhibition. Adult rats of group FC showed decreased 5-HT2C and neuropeptide Y mRNA expression compared with control chow diet group (CC). After chronic use of a hypercaloric diet, the expression of 5-HT2C was higher in the FH group than the FC group and neuropeptide Y expression decreased in FH related to FC. CONCLUSIONS: These findings suggest that neonatal serotonin reuptake inhibition is associated with better adaptation to hypercaloric diet in adult rats.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo/metabolismo , Serotonina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Gravidez , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Triglicerídeos/sangue
16.
Pharmacol Biochem Behav ; 134: 106-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25933794

RESUMO

AIM: The aim of this study was to analyze the effects of protein perinatal malnutrition on the function of dopamine DRD1 and DRD2 receptors in regards to motivation and food consumption in adult mice. The study also analyzed the effect of protein perinatal malnutrition on the gene expression of these receptors in the ventral striatum. METHODS: Wistar lineage mice were divided into two groups according to maternal diet: control (17% casein), n=30 and low protein (8% casein), n=30. Between 30 and 120days of life, the following factors were measured: body weight; the effect of dopamine D1 and D2 agonists on the ingestion of palatable food; the motivational aspect under the action of the D1 (SKF 38393) and D2 Quinpirole dopaminergic agonists; and the gene expression of DRD1 and DRD2 receptors in the ventral striatum. RESULTS: The body weights of the malnourished animals remained significantly lower than those of the control group from 30 to 120days of life. Malnourished animals ingested a greater quantity of palatable food. There was a decrease in palatable diet consumption in both the control and malnourished groups after the application of D1 and D2 agonists; however, the anorexic effect of the D1 agonist was understated in malnourished animals. Perinatal malnutrition increases the motivational behavior of the animal when food reward is used. There was an increase in gene expression of the DRD1a receptor in the ventral striatum of malnourished animals, and there were no significant changes concerning the DRD2 receptor. CONCLUSIONS: Perinatal protein malnutrition stimulates hedonic control of eating behavior by promoting increased intake of palatable foods, possibly due to increased expression of dopamine receptor DRD1a in the ventral striatum.


Assuntos
Corpo Estriado/metabolismo , Desnutrição/fisiopatologia , Receptores de Dopamina D1/metabolismo , Recompensa , Animais , Agonistas de Dopamina/farmacologia , Feminino , Exposição Materna , Camundongos , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...